
 Humans have the remarkable ability to recognize complex, real-world scenes in a 
single, brief  glance. The  gist , the essential meaning of a scene, can be recognized in a 
fraction of a second. Such recognition is sophisticated, in that people can accurately 
detect whether an animal is present in a scene or not, what kind of event is occurring 
in a scene, as well as the scene category, all in as little as 150 ms ( Potter, 1976 ;  Schyns 
 &  Oliva, 1994 ;  Thorpe, Fize,  &  Marlot, 1996 ;  VanRullen  &  Thorpe, 2001 ). With this 
remarkable ability, the experience of scene perception feels effortless. It is ubiquitous 
as it is fundamental — after all, every image that comes into our brain is a scene. Scene 
perception directly impacts our actions in a 3D world by providing information about 
where we are as well as where we should navigate. This requires the integration of 
views across eye movements and across time to connect the present view with past 
memory. Thus, as effortless as it seems, scene perception involves many different levels 
of computation that integrate space, time, and memory. In this chapter we demon-
strate the constructive nature of scene perception involving different brain regions to 
achieve a meaningful experience of the visual world. 

 The human visual system has three overarching goals in processing the visual envi-
ronment. First, at the moment of physical input, the visual system must rapidly 
compute diagnostic properties of space and objects contained in the scene. Aside from 
recognizing faces and communicating with people, our daily activities require com-
prehension of the environment ’ s spatial layout for the purposes of navigation as well 
as recognition of objects contained within that environment. As you view a particular 
scene, you are rapidly computing its spatial structure: determining where buildings 
are located and identifying paths through which you might navigate. At the same time, 
you can recognize a scene as a part of the broader environment and as a familiar 
scene in your memory. Visual scene understanding thus involves integrating a series 
of computations to enable coherent and meaningful scene perception. 

 Spatial structure, landmarks, and navigational paths are the major structural prop-
erties that defi ne a scene. Recognizing these different structural properties is central 
to scene perception. Scenes with similar sets of structural properties will be grouped 
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into similar scene categories. For example, if  two scenes both have an open spatial 
layout, natural content, and strong navigability, they will both be categorized as fi elds. 
On the other hand, if  two scenes have some overlapping structural properties but 
differ largely in other properties, they will be categorized differently. For example, if  
both scenes have an open spatial layout, but one has urban content and the other has 
natural content, they will be categorized differently (e.g., a highway vs. a fi eld). Thus, 
a scene category is defi ned by combinations of different structural features (e.g., 
spatial layout and objects), and these structural features dictate how the viewer will 
recognize the space and function within it. In the fi rst part of the chapter we examine 
how the brain represents structural property dimensions of scenes. 

 If  the initial problem of scene recognition involves integrating multiple structural 
properties into a representation of a single view of a scene, then the second major chal-
lenge for the visual system is the problem of perceptual integration. To describe this 
problem, we should defi ne the following terms —  view, scene,  and  place  — which depend 
on the observer ’ s interactions with the environment ( Oliva, Park,  &  Konkle, 2011 ). 
When an observer navigates in the real world, the observer is embedded in a space of 
a given  “ place, ”  which is a location or landmark in the environment and often carries 
semantic meaning (e.g., the Yale campus, my kitchen). A  “ view ”  refers to a particular 
viewpoint that the observer adopts at a particular moment in one fi xation (e.g., a view 
of the kitchen island counter when standing in front of the refrigerator), and a  “ scene ”  
refers to the broader extension of space that encompasses multiple viewpoints. For 
example, a scene can be composed of multiple viewpoints taken by an observer ’ s head 
or eye movements (e.g., looking around your kitchen will reveal many views of one 
scene). Visual input is often dynamic, as the viewer moves through space and time in 
the real environment. In addition, our visual fi eld is spatially limited, causing the viewer 
to sample the world through constant eye and head movement. Yet, in spite of this 
succession of discrete sensory inputs, we perceive a continuous and stable perceptual 
representation of our surroundings. Thus, the second challenge for scene recognition 
is to establish coherent perceptual scene representations from discrete sensory inputs. 
Specifi cally, this involves the balancing of two opposing needs: each view of a scene 
should be distinguished separately to infer the viewer ’ s precise position and direction 
in a given space, but these disparate views must be linked to surmise that these scenes 
are part of the same broader environment or  “ place. ”  In the second part of this chapter 
we discuss how the human visual system represents an integrated visual world from 
multiple discrete views that change over time. In particular, we focus on different func-
tions of the parahippocampal place area (PPA) and retrosplenial complex (RSC) in 
representing and integrating multiple views of the same place. 

 A third challenge for the visual system is to mentally represent a scene in memory 
after the viewer moves away from a scene and the perceptual view of the scene has 
disappeared. We often bring back to our mind what we just saw seconds ago, or need 
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to match the current view with those in memory that refl ect past experience. Such 
memory representations can closely refl ect the original visual input, or they may be 
systematically distorted in some way. In the last part of the chapter we describe studies 
that test the precise nature of scene memory. In particular, we show that the scene 
memory is systematically distorted to refl ect a greater expanse than the original retinal 
input, a phenomenon called  boundary extension . 

 These complex visual and memory functions are accomplished by a network of 
specialized cortical regions devoted to processing visual scene information (  fi gure 3.1, 
plate 2 ). Neuroimaging studies of scene recognition have provided insight about the 
functioning of these specialized cortical regions. Among them, the most well-known 
region is the parahippocampal place area (PPA) near the medial temporal region, 
which responds preferentially to pictures of scenes, landmarks, and spatial layouts 
depicting 3D space ( Aguirre, Zarahn,  &  D ’ Esposito, 1998 ;  Epstein, Harris, Stanley, 
 &  Kanwisher, 1999 ;  Epstein  &  Kanwisher, 1998 ;  Janzen  &  Van Turennout, 2004 ). The 
PPA is most sensitive to the spatial layout or 3D structure of an individual scene, 
although some recent work suggests that the PPA also responds to object information 
such as the presence of objects in a scene ( Harel, Kravitz,  &  Baker, 2013 ), large real-
world objects ( Konkle  &  Oliva, 2012 ), and objects with strong context ( Aminoff, 
Kveraga,  &  Bar, 2013 ). The complexity and richness of the PPA representation are 
discussed further under Representing Structural Properties of a Scene.  

 The PPA has been one of the most studied regions to represent  “ scene category-
specifi c ”  information; however, more recent fi ndings suggest that there is a family of 
regions that respond to scenes beyond the PPA, including the retrosplenial cortex and 
the transverse occipital sulcus. The retrosplenial complex (RSC), a region superior to 
the PPA and near the posterior cingulate, responds strongly to scenes compared to 
other objects (just as the PPA does). Yet, the RSC shows unique properties that may 
be important for spatial navigation rather than visual analysis of individual scenes 
( Epstein, 2008 ;  Park  &  Chun, 2009 ;  Vann, Aggleton,  &  Maguire, 2009 ). For example, 
the RSC shows relatively greater activations than the PPA for route learning in a 
virtual environment, mentally navigating in a familiar space, and recognizing whether 
a scene is a familiar one in memory ( Epstein, 2008 ;  Ino et al., 2002 ;  Maguire, 2001 ). 
The section on Integrating a View to a Scene focuses on comparing the different func-
tions of the PPA and RSC. The transverse occipital sulcus (TOS) also responds 
selectively to scenes compared to other visual stimuli. Recent fi ndings suggest that the 
TOS is causally involved in scene recognition and is sensitive to mirror-reversal 
changes in scene orientation, whereas the PPA is not ( Dilks, Julian, Kubilius, Spelke, 
 &  Kanwisher, 2011 ;  Dilks, Julian, Paunov,  &  Kanwisher, 2013 ). Finally, in contrast 
to the regions above that prefer scenes over objects, the lateral occipital complex 
(LOC) represents object shape and category ( Eger, Ashburner, Haynes, Dolan,  &  
Rees, 2008 ;  Grill-Spector, Kushnir, Edelman, Itzchak,  &  Malach, 1998 ;  Kourtzi  &  
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Kanwisher, 2000 ;  Malach et al., 1995 ;  Vinberg  &  Grill-Spector, 2008 ). Because scenes 
contain objects, we also consider the role of the LOC in representing the object con-
tents and object interactions in a scene.    

 The goal of this chapter is to review studies that characterize the nature of scene 
representation within each of these scene-sensitive regions. In addition, we address 
how the functions of scene-specifi c cortical regions are linked at different stages 
of scene integration: structural construction, perceptual integration, and memory 
construction.  

 We propose a theoretical framework showing distinct but complementary levels of 
scene representation across scene-selective regions ( Park  &  Chun, 2009 ;  Park, Chun, 
 &  Johnson, 2010 ;  Park, Intraub, Yi, Widders,  &  Chun, 2007 ), illustrated in   fi gure 3.1 
(plate 2) . During navigation and visual exploration different physical views are per-
ceived, and the PPA represents the visuostructural property of each view separately 
( Epstein  &  Higgins, 2007 ;  Epstein  &  Kanwisher, 1998 ;  Goh et al., 2004 ;  Park, Brady, 
Greene,  &  Oliva, 2011 ;  Park  &  Chun, 2009 ), encoding the geometric properties of 
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 Figure 3.1 (plate 2) 
 A schematic illustration of three levels of scene processing. As the viewer navigates in the world, 
different views of scenes enter the visual system (view 1, view 2, view 3). The PPA treats each view of 
scenes as different from the others and is involved in analyzing the spatial properties of each specific 
view, such as the spatial layout and structure. The LOC processes object content properties in a scene, 
such as whether scenes have natural or urban content. The RSC and TOS analyze the navigationally 
relevant functional properties of a scene, creating an integrated representation of a scene across views. 
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scenes such as perspective, volume, and open/closed spatial layout, regardless of what 
types of objects fi ll in the space ( Kravitz, Peng,  &  Baker, 2011 ;  Park, Brady, et al., 
2011 ;  Park, Konkle,  &  Oliva, 2014 ). In parallel, the LOC represents the object proper-
ties in a scene, such as whether the scene has natural content (e.g., trees and vegetation) 
or whether the scene has urban content (e.g., buildings and cars;  Park, Brady, et al., 
2011 ). None of these regions represents scenes solely based on semantic category; for 
example, a city street and a forest will be represented similarly in the PPA as long as 
they have similar spatial layout, regardless of their differing semantic categories 
( Kravitz et al., 2011 ;  Park, Brady, et al., 2011 ). The RSC represents scenes in an inte-
grated/view-independent manner, treating different views that are spatiotemporally 
related as the same scene ( Epstein  &  Higgins, 2007 ;  Park  &  Chun, 2009 ). Given its 
involvement in spatial navigation in humans and rodents ( Kumaran  &  Maguire, 2006 ), 
the RSC may also represent a scene ’ s functional properties, such as how navigable 
a scene is, how many possible paths there are, or what actions the observer should 
take within the environment. The TOS may also represent the navigability of a scene, 
given that this region is sensitive to mirror-reversal changes of scenes, which alter the 
direction of a path (e.g., a path originally going to the left now will become a path 
going to right;  Dilks et al., 2011 ). This pattern of response is similar to that of the 
RSC but different from that of the PPA, which does not show any sensitivity to 
mirror-reversal changes. 

 In the current chapter we present evidence that demonstrates how the distinct 
regions illustrated in   fi gure 3.1 (plate 2)  play a complementary role in representing 
the scene at the visuostructural level, perceptual integration level, and memory level. 

 Representing Structural Properties of a Scene 

 People are good at recognizing scenes, even when these scenes are presented very 
rapidly ( Potter, 1975 ; also see chapter 9 by Potter in this volume). For example, when 
a stream of images is presented at a rapid serial visual presentation rate of around 
100 ms per item, people can readily distinguish if  a natural forest scene appeared 
among a stream of urban street images ( Potter, 1975 ;  Potter, Staub,  &  O ’ Connor, 
2004 ). Even though people are able to recognize objects in rapidly presented scenes 
such as  “ trees, ”  what subjects often report is in the basic-level category of a scene, 
such as a forest, beach, or a fi eld ( Rosch, 1978 ). Thus, one might assume that scenes 
are organized in the brain according to basic-level categories, with groups of neurons 
representing forest scenes, fi eld scenes, and so on. However, recent computational 
models and neuroimaging studies suggest that the visual system does not classify 
scenes as belonging to a specifi c category per se but rather according to their global 
properties, that is, their spatial structure ( Hoiem, Efros,  &  Hebert, 2006 ;  Torralba  &  
Oliva, 2003 ;  Torralba, Oliva, Castelhano,  &  Henderson, 2006 ).  
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 Object information and the spatial structure of a scene are extracted separately but 
in parallel (Oliva  &  Torralba, 2001) and then are later integrated to arrive at a decision 
about the identity of the scene or where to search for a particular object. In other 
words, when the visual system confronts a scene, it fi rst decomposes the input into 
multiple layers of information, such as naturalness of object contents, density of 
texture, and spatial layout. This information is later combined to give rise to a mean-
ingful scene category (in this example, a forest). Behavioral studies also suggest that 
object and scene recognition take place in an integrated manner ( Davenport  &  Potter, 
2004 ;  Joubert, Rousselet, Fize,  &  Fabre-Thorpe, 2007 ). Target objects embedded in 
scenes are more accurately identifi ed in a consistent than an inconsistent background, 
and scene backgrounds are identifi ed more accurately when they contain a consistent 
rather than inconsistent object ( Davenport  &  Potter, 2004 ;  Loftus  &  Mackworth, 
1978 ;  Palmer, 1975 ). We also almost never see objects devoid of background context, 
and many scenes are in fact defi ned by the kinds of objects they contain — a pool table 
is what makes a room a pool hall, and recognizing a pool hall thus involves the rec-
ognition of the pool table in it, in addition to the indoor space around it. Taken 
together, these facts indicate that objects and scenes usefully constrain one another 
and that any complete representation of a visual scene must integrate multiple levels 
of these separable properties of spatial layout and object content. 

 Natural scenes can be well described on the basis of global properties such as dif-
ferent degrees of openness, expansion, mean depth, navigability, and others ( Greene 
 &  Oliva, 2009b ;  Oliva  &  Torralba, 2006 ). For example, a typical  “ fi eld ”  scene has an 
open spatial layout with little wall structure, whereas a typical  “ forest ”  scene has an 
enclosed spatial layout with strong perspective of depth (  fi gure 3.2, plate 3 ). In addi-
tion, a fi eld has natural objects or textures such as grass and trees, and a forest scene 
typically has natural objects such as trees, rocks, and grass. Similarly, urban scenes 
such as a street or highway can also be decomposed according to whether the scene ’ s 
horizon line is open and visible (e.g., highway) or enclosed (e.g., street), in addition 
to its manmade contents (e.g., cars, buildings). We recognize a fi eld as belonging to 
fi eld category and a street as belonging to a street category because the visual system 
immediately computes the combination of structural scene properties (e.g., spatial 
layout and object content). The combination of such scene properties thus constrains 
how we interact with scenes or navigate within them. 

 In the example above we mentioned the spatial and object dimensions of a scene, 
but it is worth noting that real-world scenes have much higher degrees of complexity 
and dimensionality of structural information ( Greene  &  Oliva, 2009a ,  2009b ;  Oliva 
 &  Torralba, 2006 ). In a complex real-world scene these numerous properties are 
often entangled and are diffi cult to examine separately. Indeed, most investigations 
concerning the neural coding of scenes have focused on whether brain regions respond 
to one type of category-specifi c stimulus compared to others (e.g., whether the PPA 
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responds to a fi eld vs. forest or whether LOC responds to a cut-out tree on a blank 
background). However, such category-specifi c representation may be a product of 
how the visual system reduces the complex dimensionality of a visual scene into a 
tractable set of scene categories. Thus, it is important to identify the precise dimen-
sions in which neurons in scene-selective visual areas encode scene information.    

 An initial step to study scene processing in the brain should involve examining if  
scene categories are even represented to start with. After all, scenes in the same cat-
egory (e.g., two scenes in the fi eld category) are the scenes that share the most similar 
spatial and object properties (e.g., both scenes have open spatial layout, similar expan-
sion, and natural contents and textures). Research has demonstrated that scene-
responsive cortical regions such as the PPA and RSC represent the semantic category 
of scenes.  Walther, Caddigan, Fei-Fei, and Beck (2009)  used multivoxel analysis to 
test if  patterns of fMRI activity in scene-selective cortices could classify six different 
natural scene categories (beach, buildings, forests, highways, industry, and moun-
tains). Analysis of patterns of neural activity can offer more precise information about 
representation in a particular brain region compared to conventional methods, which 
average activity across voxels ( Cox  &  Savoy, 2003 ;  Kamitani  &  Tong, 2005 ). Machine 
learning methods, such as support-vector machine (SVM) classifi cation, enable clas-
sifi cation of different patterns of activity associated with different categories of scenes. 
 Walther et al. (2009)  found high classifi cation performance in the PPA and RSC 
for distinguishing scene categories. Interestingly, they ran a separate behavioral study 
to measure errors in categorizing these scenes when presented very briefl y (e.g., 
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 Figure 3.2 (plate 3) 
 A schematic illustration of spatial layout and content properties of scenes. Note that the spatial layout 
can correspond between natural and urban scenes. If  we keep the closed spatial layout and fill in the 
space with natural contents, the scene becomes a forest, whereas if  we fill in the space with urban 
contents, the scene becomes an urban street scene. Likewise, if  we keep the open spatial layout and fill in 
the space with natural contents, the scene becomes a field; if  we fill in the space with urban contents, the 
scene becomes a highway scene. Figure adapted from  Park et al. (2011).  
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miscategorizing a highway scene as a beach). These behavioral error patterns were 
then compared to fMRI multivoxel classifi cation error patterns, and a strong correla-
tion was found between the two. In other words, scenes that had similar patterns of 
brain activity (e.g., beaches and highways) were scenes that were often confused in 
the behavioral scene categorization task. This elegant study showed that scene repre-
sentations in the PPA refl ect semantic categories and that scenes that are behaviorally 
confusable have similar patterns of voxel activity in this region. 

 What are the similarities across scene categories that made particular scenes highly 
confusable both behaviorally and at the neural level? The confusability between scene 
categories may be due to similarity in their spatial layouts (e.g., open spaces with a 
horizontal plane), similarity among the types of objects contained in these scenes (e.g., 
trees, cars, etc.), or similarity in the everyday function of scenes (e.g., spaces for trans-
portation, spaces for social gatherings). Determining what types of scenes are system-
atically confused with one other can reveal whether a brain region represents spatial 
properties or object properties.  Park et al. (2011)  directly tested for such confusion 
errors using multivoxel pattern analysis. They asked whether two different properties 
of a scene, such as its spatial layout and its object content, could be dissociated within 
a single set of images. Instead of asking whether the PPA and LOC could accurately 
represent different categories of scenes, they focused on the confusion errors of a 
multivoxel classifi er to examine whether scenes were confused based on similarity in 
spatial layout or object contents. There were four types of scene groups defi ned by 
spatial layout and object content (  fi gure 3.3, plate 4 : open natural scenes, open urban 
scenes, closed natural scenes, and closed urban scenes). Open versus closed defi ned 
whether the scene had an open spatial layout or a closed spatial layout. The natural 
versus urban distinction defi ned whether the scene had natural or urban object con-
tents. Although both the PPA and LOC had similar levels of accurate classifi cation 
performance, the patterns of confusion errors were strikingly different. The PPA made 
more confusion errors across images that shared the same spatial layout, regardless 
of object contents, whereas the LOC made more confusion errors across images that 
shared similar objects, regardless of spatial layout. Thus, we may conclude that a street 
and a forest will be represented similarly in the PPA as long as they have similar spatial 
layout, even though a street is an urban scene and a forest is a natural scene. On the 
other hand, a forest and fi eld scene will be represented similarly in the LOC because 
they have similar natural contents.    

 Another study computed a similarity matrix of 96 scenes and also found that PPA 
representations are primarily based on spatial properties (whether scenes have open 
spatial layout vs. closed spatial layout), whereas representations in early visual cortex 
(EVC) are primarily based on the relative distance to the central object in a scene 
(near vs. far;  Kravitz et al., 2011 ). Using a data-driven approach, the authors mea-
sured multivoxel patterns for each of 96 individual scenes. They then cross-correlated 
these response patterns to establish a similarity matrix between each pair of scenes. 
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When the matrix was reorganized according to dimensions of space (open vs. closed), 
objects (natural vs. urban) and distance (near vs. far), there was a high correlation in 
the PPA for scenes that shared dimensions of space (  fi gure 3.4A, plate 5 ), and high 
correlation in EVC for scenes that shared the dimension of distance. These results 
highly converge with those of  Park et al. (2011) , together suggesting that scene rep-
resentations in the PPA and RSC are primarily based on spatial layout information 
and not scene category per se.    

  Park et al. (2011)  and  Kravitz et al. (2011)  indicate that the PPA and LOC have 
relatively specialized involvement in representing spatial or object information. 
However, one should be careful in drawing conclusions about orthogonal or categori-
cal scene representations across the PPA and LOC. The PPA does not exclusively 
represent spatial information, and the LOC does not solely represent object informa-
tion. For example,  Park, Brady et al. (2011)  found above-chance levels of classifi cation 
accuracy for four groups of scene types (open natural, open urban, closed natural, 
and closed urban) in both the PPA and LOC. To accurately classify these four groups 
of scenes, the PPA and LOC must encode both spatial layout (open vs. closed) and 
object information (natural vs. urban). Thus, even though the confusion error patterns 
suggest a preference for information concerning spatial layout in the PPA and a pref-
erence for object content information in the LOC, these functions are not exclusively 
specialized. In fact, scene information spans a gradient across ventral visual regions. 
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 Figure 3.3 (plate 4) 
 (A) Hypothetical patterns of confusion errors based on the spatial layout or object content similarity. The 
rows represent the scene image conditions as presented to the participants, and the columns represent the 
scene condition that the classifier predicted from the fMRI patterns of activity. If  spatial layout properties 
of scenes are represented in a particular brain area, we expect confusion within scenes that share the same 
spatial layout (marked in light gray). If  content properties of scenes are important for classification, we 
expect confusion within scenes that share the same content (dark gray cells). (B) Confusion errors 
(percentage) are shown for the PPA and the LOC. Figure adapted from  Park et al. (2011).  
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 Harel, Kravitz, and Baker (2013)  manipulated spatial layout (e.g., open spatial layout, 
closed spatial layout, or no spatial layout) and object content (furniture present or 
absent;   fi gure 3.4B, plate 5 ). They tested if  the PPA, LOC, and RSC could correctly 
decode whether a scene background contained spatial layout information (space 
absence decoding) and whether a scene contained an object (object absence decoding). 
Multivoxel pattern analysis showed that RSC was able to decode whether a scene 
included spatial layout information but not whether a scene contained objects. In 
contrast, the LOC was able to decode whether a scene contained objects but not 
whether a scene ’ s background included spatial layout information. The PPA was able 
to decode both whether the scene contained spatial layout information or object 
information. These results suggest that there is a gradient of representation: strong 
spatial representation with little object representation in the RSC; some spatial and 
some object representation in the PPA; and strong object representation with little 
spatial representation in the LOC. 

A. Kravitz et al. (2011) B. Harel et al. (2013)

C. Walther et al. (2011)

Space present 
(closed)

Space present 
(open)

Space absent 
(gradient)

OpenClosed

 Figure 3.4 (plate 5) 
 (A) Multidimensional scaling plot for the PPA. Scenes are shown in a two-dimensional plane with the 
distance between pairs of scenes reflecting the correlation between their response patterns. Pairs of 
images that had higher correlations are shown closer together. Here, you can see that scenes that had 
similar spatial layout (closed or open) are clustered closely together ( Kravitz, Peng,  &  Baker, 2011 ). 
(B) Stimuli used in  Harel et al. (2013) . Participants saw minimal scene stimuli that are composed of 
objects (e.g., furniture) combined with three different types of background stimuli (closed-space present, 
open-space present, and gradient-space absent). (C) Examples of line drawing images used in  Walther 
et al. (2011) . A corresponding line drawing is shown (D) for a photograph of a scene (A). This line 
drawing scene was degraded by either removing 50% of its pixels by removing local contours (short 
lines) (B) or global contours (long lines) (E); or by removing 75% of pixels by removing short (C) or 
long contours (F). The category identification performance was significantly impaired when global 
contours were removed (E and F) compared to when local contours were removed (B and C), suggesting 
that global spatial layout information is important. Figures adopted from Kravitz, Peng, and Baker 
(2011), Harel, Kravitz, and Balker (2013), and Walther et al. (2011). 
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 Other studies have tested whether different cues for defi ning spatial layout informa-
tion matter for scene categorization.  Walther et al. (2011)  suggests that scene catego-
rization is largely based on the global structure of a scene, such as its global contours. 
To test whether global or local contours have different degrees of impact,  Walther et 
al. (2011)  selectively removed equal pixel amounts of global (long) or local (short) 
contours from a line drawing scene (  fi gure 3.4C, plate 5 ). Participants performed 
signifi cantly worse in identifying the categories of scenes that had global contours 
removed compared to scenes that had local contours removed, suggesting that global 
spatial layout information is more important for scene identifi cation. 

 Although the studies described above have investigated spatial representation, other 
studies have focused on the representation of object properties in scenes.  MacEvoy 
and Epstein (2011)  were able to predict a scene category from multiple objects in the 
lateral occipital cortex (LO) but not in the PPA. That is, multivoxel patterns in the 
LO for a scene category (e.g., kitchen) were highly correlated with the average of the 
patterns elicited by signature objects (e.g., stove or refrigerator). These results support 
earlier views of scene perception, which held that real-world scene identifi cation 
emerges by identifying a set of objects in it ( Biederman, 1981 ;  Friedman, 1979 ). 
However, a scene is not just a bag of objects or linear combinations of them but 
refl ects the semantic co-occurrence or spatial composition between these objects. 
Objects often appear in meaningful spatial arrangements based on the functional or 
semantic relationship between them (e.g., a cup on a table; a pot pouring water into 
a cup). This interacting relationship enhances the identifi cation of individual objects 
( Green  &  Hummel, 2006 ) and scenes ( Biederman, 1981 ).  Kim and Biederman (2011)  
tested how a collection of objects may be processed together as a scene. They asked 
whether a particular brain region encodes meaningful relationships among multiple 
objects. They showed that the LOC responds strongly to a pair of objects presented 
in an interacting position (e.g., a bird in front of a bird house) compared to a pair of 
objects presented side by side and not interacting in a semantically meaningful way. 
They did not fi nd any preference for interacting objects in the PPA, consistent with 
the idea that the PPA does not care about object information ( MacEvoy  &  Epstein, 
2011 ). These studies suggest that the LO represents more than simple object shape 
and should be considered a scene-processing region, representing multiple objects and 
their relationships to one another. On the other hand, the PPA seems to represent 
geometric space beyond an object or multiple objects consistent with recent compu-
tational fi ndings that suggest parallel processing of objects and spatial information 
( Fei-Fei  &  Perona, 2005 ;  Lazebnik, Schmid,  &  Ponce, 2006 ;  Oliva  &  Torralba, 2001 ). 

 Thus, both the PPA and LO contribute to scene processing: the PPA represents 
geometric aspects of space, and the LO represents multiple objects and their relation-
ships. Although this suggests that the spatial and object properties of scenes are 
represented differently in distinctive brain regions, defi ning what constitutes an object 
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property or spatial property can be ambiguous. Objects sometimes defi ne a scene ’ s 
spatial layout — for example, a fountain can be categorized as an object or as a land-
mark. Size, permanence, and prior experience with a particular object modulate 
whether it is treated as an object or a scene. When objects gain navigational (land-
mark) signifi cance, they may be treated as scenes and activate the PPA.  Janzen and 
Van Turennout (2004)  had subjects view a route through a virtual museum while 
target objects were placed at either an intersection of a route (decision point relevant 
for navigation) or at simple turns (nondecision point). High PPA activity was found 
for objects at intersections, which were critical for navigation, compared to objects at 
simple turns, which were equally familiar but did not have navigational value. This 
fi nding suggests that prior experience with an object in a navigationally relevant situ-
ation transforms these objects to relevant landmarks, which activates the PPA.  Konkle 
and Oliva (2012)  also showed that large objects such as houses activate the PPA region 
more than small objects. 

 One can also ask whether the PPA and RSC differentiate landmark properties. 
 Auger, Mullally, and Maguire (2012)  characterized individual landmarks by multiple 
properties such as size, visual salience, navigational utility, and permanence. They 
found that the RSC responded specifi cally to the landmarks that were consistently 
rated as permanent, whereas the PPA responded equally to all types of landmarks. 
In addition, they showed that poor navigators, compared to good navigators, were 
less reliable and less consistent in their ratings of a landmark ’ s permanence. Thus, the 
primary function of the RSC may be processing the most stable or permanent feature 
of landmarks, which is critical for navigation. Altogether, the above studies suggest 
that object and scene representations are fl exible and largely modulated by object 
properties or prior interactions with an object, especially when the objects may serve 
a navigational function, which we discuss further in the next section. 

 Integrating a View to a Scene 

 Once an immediate view is perceived and a viewer moves through the environment, 
the visual system must now confront the problem of integration. There are two seem-
ingly contradictory computational problems that characterize this process. First, the 
visual system has to represent each individual view of a scene as unique in order to 
maintain a record of the viewer ’ s precise position and heading direction. At the same 
time, however, the visual system must recognize that the current view is a part of a 
broader scene that extends beyond the narrow aperture of the current view. Construct-
ing such an integrated representation of the environment guides navigation, action, 
and recognition from different views. How does the brain construct such stable per-
cepts of the world? In this section, we discuss how the human visual system perceives 
an integrated visual world from multiple specifi c views that change over time. 
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 For this purpose, we focus on two scene-specifi c areas in the brain, the PPA and 
the RSC. Both of these regions may be located by using a scene localizer, exhibiting 
strong preference to scenes over other visual stimuli. However neurological studies 
with patients suggest that the PPA and the RSC may play different roles in scene 
perception and navigation. Patients who have damage to the parahippocampal area 
cannot identify scenes such as streets or intersections and often rely on identifi cation 
of small details in a scene such as street signs ( Landis, Cummings, Benson,  &  Palmer, 
1986 ;  Mendez  &  Cherrier, 2003 ). However, these patients are able to draw a map or 
a route that they would take in order to navigate around these landmarks ( Takahashi 
 &  Kawamura, 2002 ). Another patient with PPA damage showed diffi culty learning 
the structure of new environments but had spared spatial knowledge of familiar 
environments ( Epstein, DeYoe, Press, Rosen,  &  Kanwisher, 2001 ). This contrasts with 
patients with RSC damage, who were able to identify scenes or landmarks but had 
lost the ability to use these landmarks to orient themselves or to navigate through a 
larger environment ( Aguirre  &  D ’ Esposito, 1999 ;  Maguire, 2001 ;  Valenstein et al., 
1987 ). For example, when patients with RSC damage saw a picture of a distinctive 
landmark near their own home, they would recognize the landmark but could not use 
this landmark to fi nd their way to their house. These neurological cases suggest that 
the parahippocampal and retrosplenial areas encode different kinds of scene repre-
sentations: the parahippocampal area may represent physical details of the view of a 
scene, and the retrosplenial area may represent navigationally relevant properties such 
as the association of the current view to other views of the same scene in memory. 
These functional differences in the PPA and RSC may account for two different 
approaches taken to explain visual integration across views. The PPA, with higher 
sensitivity to perceptual details of a scene, may encode specifi c features of each view 
individually. On the other hand, the RSC, with its involvement in navigationally rel-
evant analysis of a scene, may encode spatial regularities that are common across 
views, representing the scene in a view-invariant way.    

  Park and Chun (2009)  directly tested viewpoint specifi city and invariance across 
the PPA and RSC. When the same stimulus is repeated over time, the amount of 
neural activation for the repeated stimulus is signifi cantly suppressed in comparison 
to the activity elicited when it was fi rst shown. This robust phenomenon, called repeti-
tion suppression, may be used as a tool to measure whether a particular brain region 
represents two slightly different views of scenes as the same or different (see  Grill-
Spector, Henson,  &  Martin, 2006 ).  Park and Chun (2009)  presented three different 
views from a single panoramic scene to mimic the viewpoint change that may occur 
during natural scanning (for example, when you move your eyes from the left to the 
right corner of a room;   fi gure 3.5, plate 6 ). If  scene representations in the brain 
are view specifi c, then physically different views of the same room will be treated 
differently, so that no repetition suppression will be observed. Conversely, if  scene 
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representations in the brain are view invariant, then these views will be integrated into 
the representation of a single continuous room, yielding repetition suppression for 
different views from the same scene. The results revealed that the PPA exhibits view 
specifi city, suggesting that this area focuses on selective discrimination of different 
views, whereas the RSC shows view-invariance, suggesting that RSC focuses on the 
integration of scenes under the same visual continuity. Viewpoint specifi city in the 
PPA is supported by previous literature ( Epstein, Graham,  &  Downing, 2003 ;  Epstein 
 &  Higgins, 2007 ), and viewpoint integration in RSC fi ts with its characterization as 
an area that is important in navigation and route learning in humans and rodents 
( Burgess, Becker, King,  &  O ’ Keefe, 2001 ;  Aguirre  &  D ’ Esposito, 1999 ; see also  Vann 
et al., 2009  for review). This fi nding of two distinct but complementary regions in 
scene perception suggests that the brain develops ways to construct our perception 
with both specifi city and stability from fragmented visual input. In addition, the 
experiment showed that spatiotemporal continuity across multiple views is critical to 
build an integrated scene representation RSC. When different views of panoramic 
scenes were presented with a long lag and intervening items, the RSC no longer 
showed patterns of neural attenuation consistent with scene integration. Thus, the 

View 1 View 2 View 3

PPA RSC

A.

B.

 Figure 3.5 (plate 6) 
 (A) Example of panoramic first, second, and third images. These views were taken from a single 
panoramic scene. These panoramic scenes were presented in order at fixation. The PPA panoramic third 
image was taken from a single panoramic view. Panoramic first, second, and third images were 
sequentially presented one at a time at fixation. (B) Mean peak hemodynamic responses for panoramic 
first, second, and third in the PPA and RSC. The PPA showed no repetition suppression from the first 
to the third panoramic image, suggesting view specificity, whereas the RSC showed a significant 
repetition suppression, suggesting scene integration. Figure adapted from Park and Chun (2009). 
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continuous percept of time and space across changing views provides important cues 
for building a coherent visual world. 

 Other researchers have also found that the PPA and RSC distinctively represent 
individual scenes as components of broader unseen spaces.  Epstein, Parker, and Feiler 
(2007)  tested whether a specifi c view of a scene (e.g., a view of school library) is rep-
resented neurally as part of a broader real-world environment beyond the viewer ’ s 
current location (e.g., the whole campus). In their study they presented participants 
from the University of Pennsylvania community with views of familiar places around 
the campus or views from a different, unfamiliar campus. Participants judged either 
the location of the view (e.g., whether the view of a scene is on the west or east of a 
central artery road through campus) or its orientation (e.g., whether the view is facing 
west or east of the campus). The PPA responded equally to all conditions regardless 
of the task, but the RSC showed stronger activation to location judgments compared 
to orientation judgments. The location judgment required information about the 
viewer ’ s current location as well as the location of the current scene within the larger 
environment. The RSC also showed much higher activity for familiar scenes than for 
unfamiliar scenes. Thus, the RSC is involved in the retrieval of specifi c location infor-
mation of a view and how this view is situated relative to the surrounding familiar 
environment. 

 In a related vein, researchers found different levels of specifi city and invariance 
across other scene selective areas including the transverse occipital sulcus (TOS). The 
TOS specifi cally responds to scenes compared to objects and often shows up along 
with the PPA and RSC in scene localizers. It is more posterior and lateral and is also 
often referred to as an occipital place area.  Dilks et al. (2011)  tested mirror-viewpoint 
change sensitivity in object- and scene-specifi c brain areas. When a scene image is 
mirror-reversed, the navigability of the depicted scene changes fundamentally as a 
path in the scene will reverse direction (e.g., a path originally going to the left now 
will become a path going to the right). Using repetition suppression they found that 
the RSC and the TOS were sensitive to mirror-reversals of scenes, treating two mirror-
reversed scenes as different from each other. On the other hand, they found that the 
PPA was invariant to mirror-reversal manipulations, which challenges the idea that 
the PPA is involved in navigation and reorientation. Although these results seemingly 
contradict other fi ndings showing viewpoint specifi city in the PPA, they fi t with the 
idea that the PPA represents the overall spatial layout of a given view, which is 
unchanged by mirror-reversal, as an image that has a closed spatial layout will remain 
as a closed scene; an open spatial layout will remain the same. What the mirror reversal 
changes is the functional navigability or affordance within a scene, such as in which 
direction the viewer should navigate. Thus, it makes sense that mirror-reversals did 
not affect the PPA, which represents visuospatial layout, but they affected the RSC, 
which represents the navigational properties of a scene. The function of the TOS is 
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still not well known, although recent research with transcranial magnetic stimulation 
(TMS) over the TOS suggests that the TOS is causally involved in scene perception 
( Dilks et al., 2013 ). Dilks et al. delivered TMS to the TOS and to the nearby face-
selective occipital face area (OFA) while participants performed discrimination tasks 
involving either scenes or faces. Dilks et al. found a double dissociation, in that TMS 
to the TOS impaired discrimination of scenes but not faces, whereas TMS to the OFA 
impaired discrimination of faces but not scenes. This fi nding suggests that the TOS 
is causally involved in scene processing, although the precise involvement of TOS is 
still under investigation. 

 Another related question is whether scene representations in the PPA, RSC, and 
TOS are specifi c to retinal input.  MacEvoy and Epstein (2007)  presented scenes to 
either the left or right visual hemifi elds. Using repetition suppression, they tested if  
identical scenes repeated across different hemifi elds are treated as the same or differ-
ently in the brain. They found position invariance in the PPA, RSC, and TOS, sug-
gesting that these scene-selective regions contain large-scale features of the scene that 
are insensitive to changes of retinal position. In addition,  Ward et al. (2010)  found 
that when stimuli are presented at different screen positions while fi xation of the eyes 
is permitted to vary, the PPA and TOS respond equally to scenes that are presented 
at the same position relative to the point of fi xation but not to scenes that are pre-
sented at the same position relative to the screen. This suggests an eye-centered frame 
of reference in these regions. In another study that controlled fi xations within a scene, 
 Golomb et al. (2011)  showed that active eye movements by the viewer play an impor-
tant role in scene integration. Stimuli similar to those depicted in   fi gure 3.5A (plate 
6)  were used. The PPA showed repetition suppression to successive views when par-
ticipants actively made saccades across a stationary scene (e.g., moving their eyes from 
left, middle, and right fi xation points embedded in a scene) but not when the eyes 
remained fi xed and a scene scrolled in the background across fi xation, controlling for 
local retinal input between the two manipulations. These results suggest that active 
saccades may play an important role in scene integration, perhaps providing cues for 
retinotopic overlap across different views of the same scene. 

 So far in this chapter, we have focused on the parahippocampal and retrosplenial 
cortices. However, it is important to mention the role of the hippocampus in scene 
and space perception. Functional connectivity analysis suggests that parahippocam-
pal and retrosplenial regions have strong functional connectivity with the hippocam-
pus and other medial temporal regions such as the entorhinal and perirhinal cortices 
( Rauchs et al., 2008 ;  Summerfi eld, Hassabis,  &  Maguire, 2010 ). A long history of 
rodent work has demonstrated hippocampal involvement in spatial cognition, such as 
maze learning and construction of a  “ cognitive map, ”  a mental representation of one ’ s 
spatial environment, in the hippocampus ( Knierim  &  Hamilton, 2010 ;  O ’ Keefe  &  
Nadel, 1979 ). In particular, hippocampal neurons provide information about both the 
rat ’ s external and internal coordinate systems. Place cells are one type of hippocampal 
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neuron that fi res when a rat is at a specifi c location defi ned by an external coordinate 
system. Head-direction cells fi re when the rat ’ s head is oriented at a certain direction 
in the rat ’ s internal coordinate system. The hippocampus also contains boundary cells, 
which respond to the rat ’ s relative distance to an environmental boundary ( Bird  &  
Burgess, 2008 ;  O ’ Keefe  &  Burgess, 1996 ). These fi ndings suggest that the hippocam-
pus is a critical region that represents the viewer ’ s position in the external world. In 
addition, the division of labor described above for the PPA and RSC is interesting to 
think about in relation to computational models of hippocampal function in rats. 
Recent studies suggest that pattern separation, which amplifi es differences in input, 
and pattern completion, which reconstructs stored patterns to match with current 
input, occur in different parts of the hippocampus: CA3/DG is involved in pattern 
separation, whereas CA1 is involved in pattern completion (see  Yassa  &  Stark, 2011 , 
for review). Even though it is diffi cult to make a direct comparison between hippo-
campal subregions and outer cortical regions such as the parahippocampal and ret-
rosplenial regions, these complementary functions found in the rodent hippocampus 
seem to correspond to the complementary functions found in the PPA and RSC. For 
example, the PPA may rely on pattern separation to achieve view specifi city, and the 
RSC may perform pattern completion to enable view integration. 

 Recently, fMRI studies have probed for cognitive map-like representations in human 
hippocampus.  Morgan et al. (2011)  scanned participants while viewing photographs 
of familiar campus landmarks. They measured the real-world (absolute) distance 
between pairs of landmarks and tested whether responses in the hippocampus, the 
PPA, and the RSC were modulated by the real-world distance between landmarks. 
They found a signifi cantly attenuated response in the left hippocampus for a pair of 
landmarks that are closer in the real world compared to a pair of landmarks that are 
farther from one another in the real world. In contrast, the PPA and RSC encoded 
the landmark identity but not the real-world distance relationship between landmarks 
( Morgan et al., 2011 ). These results suggest that the hippocampus encodes landmarks 
in a map-like representation, refl ecting relative location and distance between land-
marks. Another study using multivoxel pattern analysis with high-spatial-resolution 
fMRI found that the position of an individual within an environment was predictable 
based on the patterns of multivoxel activity in the hippocampus ( Hassabis et al., 
2009 ). In this experiment participants navigated in an artifi cially created room that 
had four different corners (corners A – D). In each trial the participants navigated to 
an instructed target position (e.g., go to the corner A). When they reached the corner, 
they pressed a button to adopt a viewpoint looking down, which revealed a rug on 
the fl oor. This rug view visually looked the same across four corners; thus, the multi-
voxel activity collected during this period was based on the viewer ’ s position in a room 
and not on any visual differences between the four corners. Multivoxel patterns in the 
hippocampus enabled classifi cation of which of the four corners the participant was 
positioned. These results are similar to the rat ’ s place cells, which fi re in response to 
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the specifi c location of the rat within an environment. With high-resolution fMRI 
techniques and computational models that enable segmentation of hippocampal sub-
regions, future research should be aimed at identifying whether the human hippocam-
pus, like that of the rat, also contains both external and internal coordinate systems 
facilitated by place cells and head direction cells as well as boundary cells that encode 
the viewer ’ s distance to environmental boundaries. 

 Representing Scenes in Memory 

 We sample the world through a narrow aperture that is further constrained by limited 
peripheral acuity, but we can easily extrapolate beyond this confi ned window to per-
ceive a continuous world. The previous section reviewed evidence that coherent scene 
perception is constructed by integrating multiple continuous views. Such construction 
can occur online but can also occur as we represent scene information in memory that 
is no longer in view. In this section we discuss how single views are remembered and 
how the visual system constructs information beyond the current view. Traditionally, 
the constructive nature of vision has been tested in low-level physiological studies, 
such as fi lling in of the retinal blind spot or contour completion. However, less is 
known about what type of transformations or computations are performed in higher-
level scene-processing regions. Yet, expectations about the visual world beyond the 
aperture-like input can systematically distort visual perception and memory of scenes. 
Specifi cally, when people are asked to reconstruct a scene from memory, they often 
include additional information beyond the initial boundaries of the scene, in a phe-
nomenon called  boundary extension  ( Intraub, 1997, 2002 ; also see chapter 1 by Intraub 
in this volume). The boundary-extension effect is robust across various testing condi-
tions and various populations, such as recognition, free recall, or directly adjusting 
borders of the boundary both visually and haptically ( Intraub, 2004, 2012 ). Boundary 
extension occurs in children and infants as well ( Candel, Merckelbach, Houben, 
 &  Vandyck, 2004 ;  Quinn  &  Intraub, 2007 ;  Seamon, Schlegel, Hiester, Landau,  &  
Blumenthal, 2002 ). Interestingly, boundary extension occurs for scenes with back-
ground information but not for scenes comprising cutout objects on a black screen 
( Gottesman  &  Intraub, 2002 ). This systemic boundary extension error suggests that 
our visual system is constantly extrapolating the boundary of a view beyond the 
original sensory input (  fi gure 3.6 ).    

 Boundary extension is a memory illusion, but this phenomenon has adaptive value 
in our everyday visual experience. It provides an anticipatory representation of the 
upcoming layout that may be fundamental to the integration of successive views. 
Using boundary extension, we can test whether a scene is represented in the brain as 
it is presented in the physical input or as an extended view that observers spatially 
extrapolated in memory. Are there neural processes in memory that signal the spatial 
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extrapolation of physically absent but mentally represented regions of a scene? If  so, 
this would demonstrate that higher-level scene-processing areas such as the PPA and 
RSC facilitate the perception of a broader continuous world through the construction 
of visual scene information beyond the limits of the aperture-like input. 

  Park et al. (2007)  tested for such effects of boundary extension. They used fMRI 
repetition suppression for close views and wide views of scenes to reveal which scene 
pairs were treated as similar in scene regions of the brain. When the original view of 
a scene is a close-up view, boundary extension predicts that this scene will be extended 
in memory and represented as a wider view than the original. Thus, if  the same 
scene is presented with a slightly wider view than the original, this should match the 
boundary-extended scene representation in scene-selective areas and should result in 
repetition suppression. On the other hand, if  a wide view of a scene is presented fi rst, 
followed by a close view (wide-close condition), there should be no repetition sup-
pression even though the perceptual similarity between close-wide and wide-close 
repetitions is identical. This asymmetry in neural suppression for close-wide and wide-
close repetition was exactly what  Park et al. (2007)  observed (  fi gure 3.7 ). Scene-
processing regions such as the PPA and RSC showed boundary extension in the form 
of repetition suppression for close-wide scene pairs but not for wide-close scene pairs. 
In contrast, there were no such asymmetries in the LOC. This reveals that the brain ’ s 
scene-processing regions refl ect a distorted memory representation, and such bound-
ary extension is specifi c to background scene information and not to foreground 
objects. Such extended scene representations may refl ect an adaptive mechanism that 
allows the visual system to perceive a broader world beyond the sensory input.    

 Another fMRI study on boundary extension points to further involvement of the 
hippocampus ( Chadwick, Mullally,  &  Maguire, 2013 ). Online behavioral boundary 

Close view Wide view

A B

 Figure 3.6 
 Example of boundary extension. After viewing a close-up view of a scene (A), observers tend to report 
an extended representation (B). 
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 Figure 3.7 
 Peaks of the hemodynamic responses for close-wide and wide-close conditions are shown for the PPA 
and LOC. Examples of close-wide and wide-close condition are presented at the bottom. An interaction 
between the close-wide and wide-close condition activation, representing boundary extension asymmetry, 
was observed in the PPA but not in the LOC. Figure adapted from Park et al. (2007). 
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effects were measured for individual scenes as participants viewed scenes in the 
scanner. When scenes that showed the boundary extension effect were compared to 
scenes that did not show it, there was a signifi cant difference in activity in the hip-
pocampus. Moreover, functional connectivity analysis showed that scenes with bound-
ary extension had high connectivity between the hippocampus and the parahippocampal 
cortex, whereas scenes without boundary extension effect did not. A neurological 
study with patients who have hippocampal damage also found that these patients had 
less or no boundary extension compared to a control group ( Mullally, Intraub,  &  
Maguire, 2012 ). For example, when the same close view of a scene was repeated fol-
lowing a close view, normal controls would respond that the second close view was 
different from the original, showing the usual boundary extension distortion. However, 
patients with hippocampal damage were more accurate at rating the second close view 
as identical to the original, showing no distortion from boundary extension. These 
are intriguing results because patients with hippocampal damage actually showed 
more accurate scene memory than controls, immune from the boundary extension 
error. These results suggest that the hippocampus may play a central role in boundary 
extension, and hence, the boundary extension effect found in the parahippocampal 
cortex in Park et al. ( 2007 ) may refl ect such feedback input from the hippocampus. 
Because boundary extension is an example of constructive representations of scenes 
in memory, these results further support the role of the hippocampus in the anticipa-
tion and construction of memory ( Addis, Wong,  &  Schacter, 2007 ;  Buckner  &  Carroll, 
2007 ;  Turk-Browne, Scholl, Johnson,  &  Chun, 2010 ). In addition, the boundary exten-
sion distortion should not simply be viewed as a memory error but rather as a suc-
cessful adaptive mechanism that enables anticipation of a broader perceptual world 
from limited input. 

 Because the amount of visual information a human can see at one time is limited, 
we have also evolved mechanisms for bringing to mind recent visual information that 
is no longer present in the current environment. Such acts are called  refreshing  and 
occur when one briefl y thinks back to a stimulus one just saw. The act of refreshing 
may facilitate scene integration by foregrounding the information to facilitate the 
binding of the previous and the current views. Given the potential role of refreshing 
in scene integration,  Park, Chun, and Johnson (2010)  asked whether discrete views of 
scenes are integrated during refreshing of these views. Similar to results found with 
physical scenes, when participants refreshed different views of scenes, the PPA showed 
view-specifi c representations, and the RSC showed view-invariant representations. 
Research directly comparing cortical activity for perception and refreshing showed 
that activity observed in the RSC and precuneus for refreshing closely mirrored the 
activity for perceiving in these regions ( Johnson, Mitchell, Raye, D’Esposito,  &  
Johnson, 2007 ). Thus, the act of refreshing in these high-level regions might play an 
important role during perceptual integration by mirroring the activity of perceiving 
panoramic views of scenes in continuation. 
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 Conclusion 

 Constructing a rich and coherent percept of our surroundings is essential for navigat-
ing and interacting with our environment. How do we recognize scenes? In this 
chapter we reviewed key studies in cognitive neuroscience that investigated how 
we construct a meaningful scene representation at the structural, perceptual, and 
memory levels. Multiple brain regions play distinctive functions in representing dif-
ferent properties of scenes, and the PPA, RSC, and LOC areas represent a continuum 
of specialized processing for spatial properties, from navigational features (RSC and 
PPA) to that of diagnostic objects (LOC). 

 However, even the useful distinction between spatial and object representation may 
be an oversimplifi cation. Real-world objects or scenes have enormous complexity and 
vary along an exceptionally high number of dimensions such as layout, texture, color, 
depth, density, and so on. The next major goal in the fi eld will be to understand the 
precise neural processing mechanisms in the PPA, RSC, and LOC areas. An essential 
fi rst step is to identify the dimensions in which neurons encode scene information. 
The enormous, megapixel dimensionality of a visual scene must be reduced by the 
ventral pathway to a tractable set of dimensions for encoding scene information. 
These coding dimensions must be fl exible enough to support robust categorization 
but also sensitive to parametric variations necessary for discriminating different exam-
plars and specifi c views. 

 Scene research lags behind that for faces and objects. Electrophysiological recordings 
reveal neurons in the face-selective cortex that encode specifi c and parametric compo-
nents of face parts, geometry, and confi guration ( Freiwald  &  Tsao, 2010;  Freiwald, 
Tsao,  &  Livingstone, 2009) and object-selective regions that encode parametric 
dimensions of 2D contour, 3D surface orientation, and curvature of objects ( Hung, 
Carlson,  &  Connor, 2012 ). Research in human IT cortex has also begun to show not 
only categorical but continuous representations of individual objects ( Kriegeskorte et 
al., 2008 ). Similarly detailed representations at the neuronal level have yet to be discov-
ered for scene perception. Hence, one of the next goals in the fi eld of scene perception 
should be to test precise coding dimensions of scene-selective neurons refl ecting con-
tinuous and parametric changes in the coding dimension (e.g., varying degrees of the 
size of space; varying degrees of openness in spatial layout). For example, do the PPA 
and RSC discriminate the size of space independent of the clutter or density of objects 
within a given space? Estimating the size of space and the level of clutter in a scene is 
central to our interactions with scenes — for example, when deciding whether or not to 
take a crowded elevator or when driving through downtown traffi c.  Park et al. (2011)  
varied both the size of space and levels of object clutter depicted within scenes and 
discovered that the anterior portions of the PPA and RSC responded parametrically to 
different sizes of space in a way that generalized across scene categories. 
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 Another major goal in the fi eld of scene understanding is to describe how informa-
tion from multiple scene-selective regions, representing different properties of scenes, 
is synthesized. Scene categorization and scene gist recognition are so rapid and effi -
cient, some of this information must be combined at very early stages of visual pro-
cessing. How and where are these properties weighted and combined to enable scene 
categorization that rapidly occurs within 200 ms? Future research should aim to reveal 
the interaction across the family of scene-selective regions within the rapid time course 
of scene recognition. 

 How do we represent a coherent scene from constantly changing visual input? 
Converging evidence throughout this chapter suggests that the brain overcomes mul-
tiple constraints of our visual input by constructing an anticipatory representation 
beyond the frame of the current view. The visual system assumes what may exist just 
beyond the boundaries of a scene or what may exist when our eyes are successively 
moved to the next visual frame. Such assumptions are represented in high-level visual 
areas and produce a rich and coherent perceptual experience of the world. Is there a 
functional architecture in the brain that enables such extrapolation of scene informa-
tion? The PPA represents scenes not just based on the current visual stimulus but 
within the temporal context in which these scenes were presented ( Turk-Browne, 
Simon,  &  Sederberg, 2012 ). A scene that was embedded in a predictable temporal 
context had greater PPA repetition suppression than a scene that did not have any 
predictable temporal context preceding it. These results show that the PPA not only 
represents the present input but integrates predictable contexts created from the past. 
Such predictive coding found in high-level visual cortex may support navigation by 
integrating past and present input. Related to this, an important future direction for 
scene perception research would be to show how real-world scene perception unfolds 
over time. In many real-world circumstances, information at the current moment 
becomes meaningful only in the context of a past event. For example, if  you present 
frames of a movie trailer in a randomized order, the whole trailer will be incompre-
hensible. Indeed, our brain is sensitive to sequences of visual information across dif-
ferent time scales ( Hasson, Yang, Vallines, Heeger,  &  Rubin, 2008 ;  Honey et al., 2012 ). 
When a meaningful visual event is presented over time (e.g., a movie clip), early visual 
areas such as V1 are involved in frame-by-frame analysis of single snapshots; midlevel 
areas such as the FFA and the PPA are involved in integration over a short time scale 
(e.g., a few seconds); and higher-order areas such as the temporoparietal junction 
(TPJ) are involved in integration and reasoning of an event over a longer time scale, 
creating a hierarchy of temporal receptive fi elds in the brain. Although these studies 
tested higher-level understanding of the meaning of complex event sequences, one 
can imagine a similar hierarchy of temporal receptive fi elds in daily navigation. For 
example, recognizing that the current view is continuous from the previous view (e.g., 
integrating panoramic views over time) might require integration over a short time 
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scale, whereas recognizing where you are in a city may require integration of the route 
you took over a longer time scale. More research on scene and spatial navigation 
should integrate how our brain combines scene information presented over different 
temporal contexts and scales. 

 Altogether, the rich and meaningful visual experience that we take for granted relies 
on the brain ’ s elegant functional architecture of multiple brain regions with comple-
mentary functions for scene perception. Research in the fi eld of scene understanding 
has grown rapidly over the past few years, and the fi eld has just begun to distinguish 
which structural and conceptual properties of visual scenes are processed at different 
stages of the visual pathway. In combination with fMRI multivoxel pattern analysis 
and computational models of low-level visual systems, we are at the stage of being 
able to roughly reconstruct what the viewer is currently seeing (akin to  “ mind reading ” ) 
( Kay, Naselaris, Prenger,  &  Gallant, 2008 ). The next major goal in the fi eld is to 
discover the precise dimensions of scenes that are encoded in multiple scene-selective 
regions, to fi gure out how these dimensions are synthesized to give rise to the percep-
tion of a complete scene, and to understand how these representations change or 
integrate over time as the viewer navigates in the world. 
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