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How is object orientation represented in the brain? Behavioral error patterns reveal systematic tendencies to
confuse certain orientations with one another. Using fMRI, we asked whether more confusable orientations are
represented more similarly in object selective cortex (LOC). We compared two widely-used measures of neural
similarity: multi-voxel pattern similarity (MVP-similarity) and Repetition Suppression. In LO, we found that
multi-voxel pattern similarity was predicted by the confusability of two orientations. By contrast, Repetition
Suppression effects in LOwere unrelated to the confusability of orientations. To account for these differences be-
tween MVP-similarity and Repetition Suppression, we propose that MVP-similarity reflects the topographical
distribution of neural populations, whereas Repetition Suppression depends on repeated activation of particular
groups of neurons. This hypothesis leads to a unified interpretation of our results and may explain other dissoci-
ations between MVPA and Repetition Suppression observed in the literature.
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Introduction

Representing an object's orientation is important in a variety of cir-
cumstances. For example, picking up a hammer requires an accurate
representation of the hammer's orientation. In addition, the orienta-
tions of objects may be crucial for interpreting a scene (e.g., a chair up-
right versus on its side), and orientation can also influence judgments
about an object's stability (Cholewiak et al., 2013) and center of mass
(Barnett-Cowan et al., 2011).

Behavioral evidence concerning the tendency to confuse orienta-
tions with one another may offer insights into how the brain represents
object orientation. In particular, mirror image views of objects are espe-
cially prone to confusion (e.g., Bradshawet al., 1976; Corballis and Beale,
1976; Farrell, 1979; Mello, 1965; Sekuler and Houlihan, 1968;
Sutherland, 1957; Wolff, 1971). Mirror-image confusion is typically
conceptualized as a tendency to confuse an image with its left–right
reflection—that is, with its reflection across a vertical axis (Fig. 1A).
However, recent behavioral research (Gregory and McCloskey, 2010;
Gregory et al., 2011) has challenged this conception, arguing that in
most studies object-based axes have been confounded with extrinsic
(i.e., non-object-based) vertical axes. In Fig. 1A, for example, the object's
primary axis of elongation is aligned with the Extrinsic Vertical Axis.
Given this confounding, confusions involving reflection across an
imilarity; OPA, Object Primary
Extrinsic Vertical Axis (EVA reflection) could equally be described as
reflections across the object's primary axis (OPA reflections; Fig. 1B).

Recent studies have dissociated EVA reflections fromOPA reflections
by presenting object stimuli at oblique orientations (Fig. 1C & D). Under
these conditions, adult participants rarely made left–right EVA reflec-
tion errors (Fig. 1C), and instead made OPA reflections (Fig. 1D) more
often than any other type of error (Gregory and McCloskey, 2010;
Gregory et al., 2011). These results indicate the importance of
distinguishing different mirror image relationships: OPA reflections
are highly confusable, whereas EVA reflections are not. In addition, the
findings raise new questions about the neural representation of object
orientation. Does the greater behavioral confusability for OPA reflec-
tions relative to EVA reflections stem from the way object orientation
is represented in the brain?

In this article we examine the neural representation of object orien-
tation in the object-selective lateral occipital complex (LOC, Malach
et al., 1995). In particular, we investigate the hypothesis that the behav-
ioral confusability of orientations reflects the similarity of their repre-
sentations in LOC. Recent work on the neural representation of mirror
images is broadly consistent with this view. Neuroimaging studies
have shown that cortical regions comprising the LOC represent mirror
image views of objects and faces similarly (Dilks et al., 2011;
Kietzmann et al., 2012; Axelrod and Yovel, 2012). These results are
bolstered by comparable findings in Macaque IT, the putative homolog
of LOC (Freiwald and Tsao, 2010; Rollenhagen and Olson, 2000).
While potentially consistent with the view that confusable orientations
are represented similarly in object-selective cortex, these studies either
presented stimuli exclusively in “upright” orientations, or only used
extrinsic (vertical or horizontal) axes of reflection. Such designs do
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Fig. 1. Mirror images and axes of reflection. Object stimuli shown with Extrinsic Vertical
Axis (EVA, dot endpoints) and Object Primary Axis (OPA, arrow endpoints) imposed.
Top row: When stimuli are presented with EVA and OPA aligned, EVA reflections
(A) are identical to OPA reflections (B). Bottom row: When presented at a tilt, EVA
reflections (C) and OPA reflections (D) can be dissociated.

Fig. 2. (A) Schematic illustration of the experimental conditions. (B) Each stimulus was
presented in eight different oblique orientations across runs.

Fig. 3. Trial structure for Experiment 1.
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not allow differentiation of OPA and EVA reflections, which differ in
their degree of behavioral confusability.

In two fMRI experiments we investigated the neural representation
of OPA reflections, EVA reflections, and a range of other orientation
relationships in object-selective cortex (LOC). Experiment 1 used Repe-
tition Suppression (RS) to ask whether OPA reflections are represented
more similarly than EVA reflections. Experiment 2 investigated the
representation of object orientation across a wider range of orientation
relationships, including but not limited to OPA and EVA reflections.
Using a continuous carry-over design (Aguirre, 2007), we measured
the similarity of neural representations using both RS and multi-voxel
pattern similarity (MVP-similarity).We compared these neural similar-
ity measures to the behavioral confusability rates for those same
orientations.

The use of both RS and MVP-similarity measures also afforded an
opportunity to ask whether these methods capture different aspects of
neural similarity. Although bothmethods are frequently used to address
questions of representational similarity, previous studies have found
that RS and MVPA do not always lead to the same conclusions
(Drucker and Aguirre, 2009; Epstein and Morgan, 2012; Moore et al.,
2013; Ward et al., 2013), raising pressing questions about what conclu-
sions should be drawn in cases where the two methods diverge. In the
General discussionwe propose that RS andMVP-similarity are sensitive
to different aspects of neural response, arguing that this hypothesis can
explain our results aswell as other dissociations betweenMVPA and RS.

Experiment 1

This experiment used RS to ask whether object-selective cortex dif-
ferentiates OPA and EVA reflections. On each trial, participants viewed
two object images involving 1) an identical repetition; 2) anOPA reflec-
tion; 3) an EVA reflection; or 4) two different objects (Fig. 2A). All
objects were presented in oblique orientations (Fig. 2B) so that OPA re-
flections were always distinct from EVA reflections. If the behavioral
confusability of orientations is related to the degree of RS, we expect
greater RS for the OPA condition than for the EVA condition.

Methods

Participants
Participants were 25 adults (15 males) between 18 and 33 years of

age, with normal or corrected-to-normal vision. Three participants
were removed due to our inability to localize any of the object-
selective regions at FDR b .05, and 3 more were removed due to exces-
sive head motion, leaving 19 participants for analysis.

Stimuli
Stimuli were color photographs of 60 isolated objects. All objects

were poly-oriented (possessing no obvious canonical orientation), had
a clear primary axis of elongation, and were bilaterally asymmetric.
Most were tools or other manipulable objects. Objects were presented
in 8 different oblique orientations (Fig. 2B) and subtended approxi-
mately 4.6° of visual angle. All stimuli were presented using the Psycho-
physics Toolbox 3 (Brainard, 1997).

Object orientation runs
Participants completed 10 object orientation runs, each consisting of

52 2-second trials, with 52 variable length (jittered 2–8 s) fixation trials
in between (152 TRs total). On each trial two object images were pre-
sented for 500 ms each, with a 500 ms blank after each image (Fig. 3).
The first image in a trial was followed by either the same image (Iden-
tical condition), a reflection across the object's primary axis (OPA condi-
tion), a reflection across an Extrinsic Vertical Axis (EVA condition), or a
different objectwith its primary axis of elongation oriented the opposite
way (Different condition); see Fig. 2A. Trials were counterbalanced so
that within each run, each of the 60 different objects in the stimulus
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set appeared exactly once and, across runs, every object appeared in
each condition the same number of times (each time in a different ori-
entation). Tomaintain participants' attention, three additional (non-an-
alyzed) trials with images of toy vehicleswere included in each run, and
participants pressed a button when they detected a vehicle.

Localizers and regions of interest
In an object localizer run, participants passively viewed 8 randomly

ordered blocks of object images (different from those used in the main
experiment) and 8 blocks of scrambled images (Park et al., 2007;
Grill-Spector et al., 1999). Scrambled images were created by dividing
the object images into a 16 × 16 square grid and randomly shuffling
the squares based on eccentricity (Kourtzi and Kanwisher, 2000). In
each block, 20 images were displayed for 600 ms each, followed by a
200 ms blank, with 10 s of rest (fixation) between blocks. Across the
7.1 minute run 160 objects and 160 scrambled images were presented.

Object-selective ROIs were functionally defined as regions in occipi-
tal and ventral temporal cortex that respondedmore strongly to objects
than to scrambled objects (FDR b .05), with cluster threshold of 4 voxels
(see Fig. 4). Object-selective LOC is divided into two subregions, the
more posterior portion LO (lateral occipital) and more anterior pFs
(posterior fusiform) (Grill-Spector et al., 1999). When the region of ac-
tive voxels for the objects N scrambled images contrast was continuous
and encompassed both LO and pFs, these ROIs were separated by in-
creasing the threshold to p b .00001 (N = 3).

V1 was localized with a retinotopic mapping run. Participants fixat-
ed the center of the screenwhile awedge-shaped checkerboard flashed.
Five blocks of each condition (horizontal and vertical) were presented
in an alternating pattern, each block lasting 12 s, followed by 12 s of
fixation. The entire run lasted 4.2 min (126 TRs). The borders of early
retinotopic regions were defined by a contrast of horizontal N vertical
wedges at FDR b. 05, after which V1 was manually drawn in to separate
it from V2–V3 (Spiridon and Kanwisher, 2002; Park et al., 2007).

fMRI acquisition
Scanning was performed on a 3T Phillips scanner at the F.M. Kirby

Center for functional brain imaging at the Kennedy Krieger Institute
(Baltimore, MD). Functional images were acquired using a 32-channel
head coil and a gradient echo single-shot echo planar imaging sequence
[36 slices, repetition time (TR) = 2 s, echo time (TE) = 30 ms, flip
angle=70°, voxel size 2.5 × 2.5 × 2.5mm, 0.5mm interslice gap]. Slices
Fig. 4. Object-selective regions of interest in a representative participant. LO is shown in
red on top, and pFs is shown in green below. Average voxel coordinates across
participants (Talairach x, y, z): LO-L: −44.25, −69.31, −6.37; LO-R: 42.12, −70.10,
−7.57; pFs-L: −35.58,−48.80, −16.41; pFs-R: 32.10,−49.82,−16.74.
were oriented along the transverse plane, covering from themost supe-
rior point of the brain to the bottom of the middle temporal lobe. High-
resolution (1 × 1 × 1 mm voxel size) magnetization-prepared rapid
acquisition images with gradient echo (MPRAGE) anatomical images
were also acquired for each participant in order to overlay functional
activity on the cortical surface.

Preprocessing and data analysis
Preprocessing with Brain Voyager QX 2.6.1 (Brain Innovation) in-

cluded slice scan-time correction, linear trend removal, high-pass filter-
ing and three-dimensional motion correction. Voxel timecourses were
then z-transformed within each run. Motion parameters were included
as regressors of no interest in all subsequent GLManalyses. No addition-
al spatial or temporal smoothing was performed. All analyses were
performed in native space (after ACPC alignment of functional and ana-
tomical images).

After ROIs were defined for each participant, timecourses for each
ROI for each participant were obtained by extracting the beta weights
from a univariate GLM modeling the 10 contiguous timepoints (FIR
model) for each condition starting with the stimulus onset. For each
ROI the peak beta weights for each condition were identified by testing
the timepoint with the highest average (numerical peak) across partic-
ipants against all neighboring time points via two-tailed paired t-tests.
For all ROIs, timepoint 5 (8 s after stimulus onset) was significantly
higher than all other timepoints (all p's b .01). All subsequent analyses
are based on the beta values calculated at this timepoint.

Results

For each ROI (V1, LO, and pFs) potential hemispheric differences
were assessed with a 2 (Hemisphere: Right vs. left) × 4 (Condition:
Identical, OPA, EVA, Different) repeated-measures ANOVA. No main ef-
fects or interactions involving hemisphere were observed, so all subse-
quent analyses collapsed across hemispheres.1 The average timecourses
for LO, pFs, and V1 are shown in Fig. 5, with peak responses for LO and
pFs shown in Fig. 6.

For all ROIs, repeated-measures ANOVAs carried out on the peak-
response data for each condition (Identical, OPA, EVA, Different) re-
vealed a significant effect of condition: LO, F(3,54) = 16.4, p b .001;
pFs, F(3,45) = 26.28, p b .001, V1, F(3,51) = 3.26, p = .0289. Subse-
quent analyses explored the condition effects with paired t-tests
(Bonferroni corrected for multiple comparisons).

Both LO and pFs showed RS: peak responsewas reduced in the Iden-
tical condition relative to the Different condition (LO: t(18) = 6.26,
p b .001; pFs, t(15) = 8.06, p b .001). For V1 the Identical condition
showed slightly lower peak response than the Different condition, but
this difference was not significant (t(17) = 1.20, p = .24). This result
is consistent with other studies failing to find RS to Identical repetitions
in V1 (Ewbank et al., 2005; Grill-Spector et al., 1999; Sayres and
Grill-Spector, 2008; Weiner et al., 2010). Subsequent analyses focused
on the two object-selective regions, LO and pFs.

We first asked whether repetitions of the same object identity (irre-
spective of orientation) elicited RS. Specifically, we compared the condi-
tions involving the same object in a different orientation (OPA and EVA
conditions) to the Different object condition. In LO the response to OPA
and EVA reflections did not differ from the response to a completely dif-
ferent object (t(18) = 2.10, n.s.; t(18) = 1.36, n.s., respectively). In ad-
dition, both OPA and EVA reflections differed from the Identical
condition, Identical vs. OPA: t(18) = 5.23, p b .001.; Identical vs. EVA:
t(18)= 5.19, p b .001, indicating a significant release from RS for orien-
tation changes. Finally, OPA and EVA reflectionswere not different from
one another t(18) = .78, n.s.
1 In caseswhere LO andpFswere localized inonly onehemisphere,we report the values
obtained in that hemisphere.



Fig. 5. Hemodynamic time courses (beta values) for LO, pFs, and V1. Error bars are 1 SEM.
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In contrast to LO, pFs showed sensitivity to object identity inde-
pendent of orientation: repetition of the same object identity at a
different orientation (OPA and EVA conditions) reduced the peak
response relative to the Different object condition: Different vs.
OPA: t(15) = 5.49, p b .001; Different vs. EVA: t(15) = 4.04, p =
.001. An ROI (LO, pFs) × Condition (Ident, OPA, EVA, Diff) two-way
repeated-measures ANOVA revealed no main effect of ROI, F(1,15) =
1.46, p = 0.25, but a significant interaction between condition and
ROI, F(3,45) = 10.53, p b .001. The bulk of this effect (82% of the inter-
action variance) was captured by a Same- vs. Different-Object contrast
[(Ident + OPA + EVA) − 3∗Diff] × ROI (LO, pFs). This result indicates
that LO and pFs differ specifically on whether repetition of an object
identity (irrespective of orientation) induced RS, with pFs showing a
strong RS effect with repetition of object identity (even with a changed
orientation), and LO failing to show this effect.

However, pFswasnot completely insensitive to orientation changes:
EVA reflections induced a significantly higher response than Identical
repetitions: Identical vs. EVA: t(15) = 4.32, p b .001. OPA reflections
also induced a numerically greater response than Identical reflections
in pFs. This difference approached but did not reach significance at
the Bonferroni-corrected p = .0083 alpha-level: Identical vs. OPA:
t(15) = 2.66, p = .017.
Fig. 6. Peak responses in object-selective ROIs. Error bars are 1 SEM.
Finally, pFs, like LO, did not distinguish OPA and EVA reflections
(OPA vs. EVA: t(15) = 2.12, n.s.). Although the mean response across
participants was slightly lower for OPA than EVA reflections in pFs
(Fig. 6), only 10 of the 19 individual participants showed this effect,
with the remaining 9 showing a difference in the opposite direction.
Experiment 1 discussion

We analyzed RS effects in object-selective regions LO and pFs in-
duced by sequential presentations of Identical orientations, OPA reflec-
tions, EVA reflections, or different objects. We predicted that the
behaviorally more confusable OPA reflections would elicit a greater
degree of RS than EVA reflections. However, this prediction was not
confirmed in either LO or pFs. Neither region showed any difference in
RS between OPA and EVA reflections.

In pFs, both OPA and EVA reflections induced RS relative to the
Different object condition. These results are consistent with previous
work showing RS to “mirror image reversals” in pFs (Dilks et al.,
2011), as both OPA and EVA reflections are mirror images. Our re-
sults do not, however, directly support an interpretation on which
RS for mirror images is related to their behavioral confusability: the
current experiment distinguished highly confusable OPA reflections
from rarely confused EVA reflections, and found that they did not
differ in their degree of RS. Given the present results, RS to both
OPA and EVA reflections in pFs may reflect a generally more
orientation- and view-invariant representation of objects in this re-
gion (Eger et al., 2004; Grill-Spector et al., 1999; Vuilleumier et al.,
2005), without this RS having anything in particular to do with
mirror-image relationships or their behavioral confusability. In-
deed, our RS results in pFs could largely be explained by sensitivity
to repetition of object identity, present for Identical, OPA, and EVA
trials but not for Different object trials.

LO, on the other hand, showed RS only for exact stimulus repetitions,
a pattern of results that could potentially be due to retinotopic sensitiv-
ity in LO. However, previous studies have demonstrated RS to the same
object despite shifts in retinal position or rotations in depth (Andresen
et al., 2009; MacEvoy and Epstein, 2007; James et al., 2002; though see
Kravitz et al., 2010), arguing against a strictly retinotopic representa-
tion. In addition, OPA reflections produce highly similar retinal images,
yet did not induce any RS. Nonetheless, we attempt to control for the
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influence of retinotopic similarity while further exploring the neural
representation of object orientation in Experiment 2.

Experiment 2

Experiment 1 focused on determining whether and to what extent
OPA and EVA reflections elicit RS. The designwas not, however, suitable
for MVP-similarity analyses, the other method of interest in the present
study. In Experiment 1 we could not obtain multi-voxel patterns for
individual stimulus orientations, because two stimulus images were
presented on each trial, and the estimated beta values therefore
reflected the response to two stimuli. Experiment 2 was designed to
allow MVP-similarity and RS analyses. We used a continuous carry-
over design (Aguirre, 2007), presenting a counterbalanced sequence
of 16 different orientations of the same object.2 This design allowed us
tomeasure themulti-voxel patterns produced by each of the 16 individ-
ual orientations, while simultaneously measuring the RS effect of each
orientation on its successor.

We addressed two questions about the representation of object ori-
entation, as revealed by both RS and MVP-similarity. First, we asked
whether the neural representations for OPA reflections aremore similar
than representations for EVA reflections. We sought to replicate the re-
sults of Experiment 1, which found no differences in RS between OPA
and EVA reflections, while also assessing whether MVP-similarity mea-
sures would cohere with the RS results. Second, we asked whether
object-selective cortex is sensitive to the behavioral confusability of ori-
entations in general, not just for OPA and EVA reflections. To address
this question, wemeasured the extent to which neural similarity corre-
lates with behavioral confusability across a range of different orienta-
tion relationships (including but not limited to OPA and EVA
reflections). Finally, based on the results from both RS and MVP-
similarity analyses, we discusswhether RS andMVP-similarity measure
different aspects of neural similarity, and how the observed differences
betweenmethods yield insights into the neural representation of object
orientation.

Methods

Participants
Twelve adults (5 males) ages 19–28 with normal or corrected-to-

normal vision participated in the study. One participant was removed
due to our inability to localize any object-selective regions, leaving 11
participants for analysis.

Stimuli
Stimuli were 16 orientations of a single object (an ice cream scoop)

selected from the stimulus objects used in the Gregory and McCloskey
(2010) behavioral study (Fig. 7A). The scoop was chosen because the
behavioral confusability results for this object were highly representa-
tive of those for the stimulus set as a whole.

Continuous carry-over runs
Stimuli were presented in counterbalanced T1I1 sequences as part of

a continuous carry-over design (Aguirre, 2007). This design renders the
“direct effect” of stimulus presentation for each stimulus (underlying
multi-voxel pattern analyses) orthogonal to the “carry-over effect” of
the response of a previous stimulus on the response to the current stim-
ulus (underlying RS analyses), allowing both analyses to be performed
on the same data set. All participants viewed the same three T1I1 se-
quences,with order counterbalanced across participants. Each sequence
consisted of 306 trials: 17presentations of each of the 16 stimuli, plus 34
(17 × 2) presentations of a blank trial, which was doubled on each oc-
currence. Each sequence was divided into sets of 3 back-to-back runs
2 The behavioral confusability of two orientations is only defined within an object, ne-
cessitating the use of a single object stimulus.
using the scan overlap technique (Aguirre, 2007) for a total of 9 runs
per participant.

On each stimulus trial (Fig. 7B), participants viewed the object stim-
ulus in a specific orientation for 1500 ms, followed by a 500 ms blank
screen, followed by a dot that appeared in one of four locations relative
to the previously presented object: in front of or behind the “mouth” of
the scoop, or in front of or behind the end of the handle. Two of the four
locationswere defined as target locations (in front of themouth, and be-
hind the handle), and participants were instructed to simultaneously
press the buttons in both hands any time the dot appeared in either tar-
get location. This task ensured that participants attended to the entire
object.

Model similarity matrices
Two model similarity matrices were generated for comparison

to the MVP-similarity data: 1) the behavioral confusability between
orientations, and 2) the degree of pixel overlap between
orientations.

Behavioral confusability model. Behavioral data from Gregory &
McCloskey (2010, Experiment 1a) were used to generate a 16 × 16
confusion matrix encoding the rate of confusion errors between each
pair of the 16 different orientations of an object. From this raw confu-
sion matrix, we generated a behavioral confusability estimate for each
orientation relationship (e.g., OPA reflection, EVA reflection, 45° rota-
tion). All matrix cells that were instances of the same orientation rela-
tionship were averaged, and all of the cells were assigned the average
value (e.g., confusion rateswere averaged across all cells that represent-
ed an OPA reflection error, and then each was re-assigned the average
value). This procedure yielded a confusionmatrixwith the same dimen-
sions as our MVP-similarity matrices, allowing us to directly compare
the two.

Pixel overlap model. To estimate the effect of low-level image similarity,
we computed a pixel overlap similarity matrix encoding the degree of
image overlap between each of the 16 stimulus images. For each
image pair pixel overlap was defined as overlapping pixels / (total
pixels / 2).

Localizers and regions of interest
In addition to the continuous carry-over runs, participants per-

formed the same object-selective region and V1 localizers described in
Experiment 1. To improve identification of object-selective ROIs, a sec-
ond object localizer using new stimuli and a one-back task (3.6 min,
109 TRs) was also presented.When object-selective ROIs could be iden-
tified with both object localizers, the final ROI was defined as the inter-
section of the regions defined by each separate localizer; otherwise, a
single localizer was used. ROI definition procedures were otherwise
the same as in Experiment 1.

fMRI acquisition & preprocessing
The main experimental runs used a 3 s TR (TE = 30 ms) and ac-

quired 47 slices, otherwise all parameters were the same as Experiment
1. For both RS and MVPA analyses, all pre-processing steps were the
same as Experiment 1.

RS analyses

Main RS analyses. For purposes of comparing the present results to those
of Experiment 1, we modeled the average response to a stimulus as a
function of its predecessor, for trials in which the predecessor was an
Identical image, an OPA reflection of the current stimulus, or an EVA re-
flection. A nuisance predictor for button responses was also included.
We fit a separate model to each participant's data to produce beta esti-
mates for each participant for each condition and each ROI.



Fig. 7. Stimulus set and trial structure for continuous carry-over runs. Left: Participants viewed a continuous sequence of 16 different orientations of a single object stimulus. Right: On each
trial, participants viewed an oriented stimulus while performing a dot detection task to force attention to the entire stimulus object (see main text for description of task).
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In a second analysis not limited to Identical, OPA, and EVA orienta-
tion relationships, we modeled neural response as a function of the rel-
ative behavioral confusability between consecutive stimuli (as defined
by the behavioral confusabilitymodel) aswell as low-level pixel overlap
between them (as defined by the pixel overlapmodel). Both behavioral
confusability and pixel overlap models were transformed into distance
matrices and then used as predictors in a GLM to model a continuous
RS effect (Aguirre, 2007; Drucker and Aguirre, 2009).

Exploratory whole-brain analysis. To assess whether any regions outside
of our ROIs showed RS, we performed a whole-brain analysis assessing
RS to OPA reflections or EVA reflections. All individual participant
timecourses were transformed into Talairach space, and a group-level
random effects (RFX) GLM was performed on the group data. We then
performed whole-brain main effect (OPA, EVA) and contrast (EVA–
OPA) analyses.

MVP-similarity analyses
To estimate multi-voxel patterns for each of the 16 stimuli, voxel

timecourses were modeled with a GLM including categorical predictors
for each of the 16 stimuli and a nuisance predictor modeling button
presses, producing an estimate of the activation at each voxel, for each
stimulus, in each of our ROIs. Voxel responses were then mean-
centered by subtracting the mean response across stimuli from each
voxel's response for each stimulus (Drucker and Aguirre, 2009; Haxby,
2001). Within each ROI, the mean-centered voxel responses for each
stimulus were then correlated with one another in a pairwise fashion
to generate a 16 × 16 correlation matrix (henceforth “MVP-similarity
matrix”).

Statistical significance was assessed via non-parametric permuta-
tion analyses in which the test statistic of interest was first calculated
with the “correct” ordering of rows and columns of the MVP-similarity
matrix, and was then resampled 10,000 times with replacement
(Kriegeskorte et al., 2008) under permuted orderings of the rows and
columns of thematrix to generate a sampling distribution of the test sta-
tistic. Statistical significance was established by comparing the correla-
tion from the “correct” ordering to the rest of the sampling distribution.
“True” correlations that fell in the top or bottom 1% of the permuted
samples, as set by our significance criterion of α = .01 (two-tailed),
were deemed statistically significant.

Comparing OPA and EVA reflections: MVP-similarity. We first compared
the correlation of multi-voxel patterns for Identical orientations, OPA
reflections, and EVA reflections. To obtain an informative value for Iden-
tical orientations, we used the MVP correlation values from the split-
half analysis procedure (see Supplementary Fig. S1). For each partici-
pant, we extracted the cell values from the MVP-similarity matrix
corresponding to correlations between Identical orientations, OPA re-
flections, and EVA reflections, and averaged them within a participant.
To test these values for significance, we simulated the null hypothesis
that the average correlation for Identical pairs, OPA reflections, and
EVA reflections does not differ from what would be expected by a
randomly-selected group of cells from the MVP-similarity matrix. See
Supplementary Methods: Comparing OPA and EVA reflections: MVP-
similarity for graphical representation and detailed description of
procedure.

Relating MVP-similarity to behavioral confusability. We compared the
MVP-similarity matrices from each participant to the two model
similarity matrices (behavioral confusability and pixel overlap) via cor-
relation and regression analyses. First, we computed the Pearson corre-
lation between each participant's MVP-similarity matrix and the two
model matrices and averaged them across participants, comparing
these values to the distribution of correlations found based on 10,000
permutations with rows and columns shuffled. In the regression
analysis, we entered each participant's MVP-similarity matrix into
a regression model including behavioral confusability and pixel
overlap similarity matrices as predictors (as well as a constant), gen-
erating beta weights for both models for each participant, which
were then averaged across participants to produce a group measure.
These group measures were compared to the distribution of values
produced when rows and columns of both model similarity matrices
were shuffled.

Results

RS analyses
In Experiment 1, highly confusable OPA reflections did not differ in

degree of RS from rarely confused EVA reflections in either LO or pFs.
To assess whether this finding would replicate in Experiment 2, we
measured the response to a stimulus when it was an Identical repeti-
tion, an OPA reflection, or an EVA reflection of the previous stimulus
(Fig. 8).

Repeated-measures ANOVAs revealed an effect of condition (Identi-
cal, OPA, EVA) in LO, F(2,20) = 7.91, p = .003, and in pFs, F(2,20) =
4.12, p = .032, but not in V1 F(2,20) = 1.49, p = .25. For LO, Identical
repetitions induced a significantly lower BOLD response than either
OPA or EVA reflections (OPA: t(10) = 4.22, p = .002; EVA: t(10) =
3.104, p = .011), but OPA and EVA conditions were not different from
one another, t(10) = .216, p = .83. The same pattern held for pFs, al-
though the reduction in response for Identical repeats did not survive
multiple comparisons at the Bonferroni-corrected alpha level.

In an additional RS analysis, we assessed whether there was a con-
tinuous RS effect as a function of the behavioral confusability or pixel



Fig. 8. Average responses in each ROI to trials involving Identical repetitions, OPA reflections, and EVA reflections. Error bars are 1 SEM.

Fig. 9. MVP-similarity (average MVP correlation) for Identical orientations, OPA
reflections, and EVA reflections. Error bars represent standard error of the mean from
permutation tests.
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overlap of subsequent stimuli (Aguirre, 2007; Drucker and Aguirre,
2009). However, in all of themeasured ROIs, neither the relative behav-
ioral confusability nor degree of pixel overlap between subsequent
stimuli modulated RS (all p's N .05).

Finally, to ensure that our ROI-based approach did not exclude brain
regions thatmay show anRS effect for OPA reflections, we conducted an
exploratory whole-brain analysis. Even at a very liberal threshold of
p b .01 (uncorrected), no regions showed significant response reduction
to OPAs relative to the average response to any object stimulus, nor a
significant difference between OPAs and EVAs.

Taken together, these results replicate the key finding of Experiment
1: for both LO and pFs, the degree of RS does not discriminate between
OPA and EVA reflections. More generally, our analyses suggest that RS
(in our ROIs as well as the rest of the brain) is insensitive to the behav-
ioral confusability of orientations.

MVP-similarity analyses
After estimating voxel responses to each of the 16 stimuli and corre-

lating them to generate 16 × 16MVP-similaritymatrices, we performed
two initial analyses aimed at ensuring the quality of our MVP data (see
Supplementary Information). These analyses confirmed that in both V1
and LO, stimuli produced reliable activation patterns across runs
(Supplementary Analysis 1: Consistency of stimulus MVPs) and
between-stimulus similarity relations were consistent across partici-
pants (Supplementary Analysis 2: Consistency of between-stimulus sim-
ilarity relations). However, this was not true of pFs, which showed at-
chance classification for stimuli and non-significant across-participant
correlations. MVP-similarity analyses therefore targeted V1 and LO.

Our main analyses asked whether confusable orientations show
similar multi-voxel patterns. First, we compared multi-voxel correla-
tions for Identical orientations, OPA reflections, and EVA reflections.
Second, we asked how well the behavioral confusability of orientations
and the degree of pixel overlap between them can each explain the
observed MVP correlations.

Comparing OPA and EVA reflections: MVP-similarity. To assess whether
multi-voxel patterns were more similar for OPA reflections than EVA
reflections in LO, we compared the average correlation between
multi-voxel patterns for Identical orientations, OPA reflections, and
EVA reflections. Themean correlation across participants for each orien-
tation relationship is shown in Fig. 9.

Identical orientations produced the highest multi-voxel correlations
(R= 0.17, 95% CI: [0.146; 0.191]), which were significantly higher than
OPAs (Identical vs. OPA, mean difference=0.05, 95% CI: [0.012; 0.094])
and EVAs (mean difference = 0.20, 95% CI: [0.163; 0.245]). Most inter-
estingly, OPA and EVA reflections were significantly different (mean
difference = 0.15, 95% CI: [0.110; 0.191]): multi-voxel patterns were
reliably more correlated for OPA reflections than for EVA reflections.

This result provides the first evidence of a neural representation
consistent with the behavioral confusability of orientations: MVP corre-
lations for OPA reflections are significantly higher than those for EVA
reflections. However, this result alone does not establish that LO is sen-
sitive to the behavioral confusability of orientations. OPA reflections
have more similar retinal images than EVA reflections, suggesting that
high MVP correlations for OPA reflections might be due to retinotopic
sensitivity in LO (Silson et al., 2013).

To assess sensitivity to behavioral confusability while accounting
for a possible effect of retinotopy, we compared the observed MVP-
similarity measures to two quantitative model similarity matrices: one
based on behavioral confusion errors between stimuli and one based
pixel overlap between stimuli. Simple pixel-based similarity measures
provide good models of retinotopic regions such as V1 (Allred et al.,



Fig. 10.Model and observed similaritymatrices. Top row:model similaritymatrices of interest. Bottom row: across-participant averageMVP-similaritymatrix (Pearson's R) for V1 and LO.
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2005; Grill-Spector et al., 1999; Op de Beeck et al., 2001; Op de Beeck
et al., 2008), and thuswe used pixel-overlap to approximate retinotopic
similarity.

Relating MVP-similarity to behavioral confusability. For both V1 and LO
we computed the Pearson correlation between the MVP-similarity ma-
trix and the pixel overlap and behavioral confusability model matrices
(Fig. 10). MVP-similarity in V1 was significantly correlated with both
model similarity matrices (behavioral confusability: R = 0.45, 95%
CI = [0.261, 0.639]; pixel overlap: R= 0.86, 95% CI= [0.675, 1]). How-
ever, correlationswith pixel overlapwere significantly higher thanwith
behavioral confusability (mean difference=−0.41, 95% CI= [−0.600,
Fig. 11. Simultaneous regression of LOMVP-similaritymatrixwith behavioral confusability and
the permutation tests.
−0.227]). The high correlation (.86) between pixel overlap and MVP-
similarity in V1 validates the pixel overlap measure, suggesting that it
captures aspects of low-level stimulus similarity to which V1 is highly
sensitive.

In LO, both behavioral confusability and pixel overlap models were
significantly correlated with MVP-similarity (behavioral confusability:
R = 0.33, 95% CI = [0.237, 0.432]; pixel overlap: R = 0.10, 95% CI =
[0.002, 0.199]). However, the pattern was the reverse of that observed
in V1: for LO, the correlation with the behavioral confusability model
was significantly greater than the correlation with the pixel overlap
model (mean difference = 0.23, 95% CI = [0.137, 0.331].)
pixel overlapmatrices as predictors. Error bars represent 1 standard error of themean from
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Themodest correlation of R= .10 betweenMVP-similarity in LO and
the pixel overlap model may reflect the moderate correlation between
the behavioral confusability and pixel overlap models (R = .50). To as-
sess the unique contribution of eachmodel to predictingMVP-similarity
in LO, we performed a simultaneous regression analysis predicting LO
MVP correlations using behavioral confusability and pixel overlap
models as predictors (Fig. 11).

In LO, behavioral confusabilitywas a reliable predictor ofMVP corre-
lations (β = 3.10, 95% CI = [2.151, 4.045]), but pixel overlap was not
(β = −0.01, 95% CI = [−0.202, 0.006]), a difference that was signifi-
cant (β difference 95% CI = [2.193, 4.198]). These results suggest that
the weak correlation between LO MVP correlations and pixel overlap
was largely due to the shared variance between behavioral confusability
and pixel overlap similarity matrices.

The shared variance between pixel overlap and behavioral
confusability models may also account for the correlation between be-
havioral confusability and V1 (R = .45). To examine this possibility
and expand our analysis to other visual regions, we performed the
above regression analysis as part of an MVP-searchlight analysis
(Rothlein and Rapp, 2014), searching across all object-responsive voxels
in ventral and occipito-parietal cortex (see Supplementary Analysis 3:
MVP-similarity searchlight analysis). The results showed that while
MVP-similarity in V1 and surrounding retinotopic cortex were well-
modeled by pixel overlap, behavioral confusability did not make a
significant unique contribution to the regression model for these re-
gions. In contrast, more anterior visual regions corresponding approxi-
mately to bilateral LO showed a significant unique effect of behavioral
confusability, but no unique effect of pixel overlap, replicating our
ROI-based regression result. Taken together with the previous analysis,
these results confirm that in LO 1) OPA reflections elicit more similar
multi-voxel patterns than EVA reflections and 2) this is attributable to
a sensitivity to the behavioral confusability of orientations, and not to
sensitivity to low-level image features.

These results also indicate that LO is sensitive to the relative behav-
ioral confusability of orientations other than OPA and EVA reflections. In
Fig. 12.MVP-similarity compared to the proportion of confusion errors for a range of orientatio
LO MVP-similarity matrix (bottom), the cells corresponding to different orientation relationsh
EHA: extrinsic horizontal axis reflection.
Fig. 12 we plot the relative behavioral confusability for several different
orientation relationships, based on Gregory andMcCloskey (2010) data
(Fig. 12A), and the average LO MVP correlations found for those same
relationships in Experiment 2 (Fig. 12B). The pattern of high and low
correlation is well matched by the pattern of high and low behavioral
confusability not only for OPA and EVA reflections, but also across the
whole set of orientation relationships.

MVP-similarity—RS relationship. We have shown that in LO, MVP-
similarity is sensitive to the behavioral confusability of orientations,
but RS is not. The observed difference between MVP-similarity and RS
was most striking for OPA reflections: multi-voxel pattern correlations
were significantly higher for OPA reflections than for EVA reflections,
yet OPA reflections did not induce any detectable RS. In an additional
RS analysis restricted to LO voxels that contributed most strongly to
the positive multi-voxel pattern correlation for OPA reflections, we
still failed to observe RS for OPAs (see Supplementary Analysis 4: RS
computed over LO voxels contributing to MVP-similarity). The clear
contrast between RS and MVP results suggests that these measures
may reflect different aspects of the neural response to oriented object
stimuli.

Experiment 2 discussion

We have shown that in LO, OPA reflections elicit more strongly
correlated multi-voxel patterns than EVA reflections. This differen-
tial MVP-similarity was found to be specifically attributable to their
differential behavioral confusability, and not to their differential
retinotopic similarity as approximated by the pixel overlap similari-
ty matrix.

The use of the pixel overlap similarity matrix also mitigates a
potential concern about the generality of these results—specifical-
ly, the fact that we used a single object as a stimulus. Pixel overlap
captures aspects of the visual similarity relations that would be
highly specific to a particular object, yet this low-level visual
n relationships. For both themodel behavioral confusability matrix (top) and the observed
ips were extracted and their values were averaged. OSA: object secondary axis reflection;



3 The key point on which models differ is precisely how the overlap in activated neural
populations relates to a reduction in BOLD response. The dependency of RS on overlap in
activated neurons is most clear in the Fatigue and Facilitation models (Grill-Spector et al.,
2006). On thesemodels, RS is due to reduction (Fatigue) or quickening (Facilitation) of re-
sponse in re-activated neurons. On the Sharpeningmodel, the first presentation of a stim-
ulus is thought to activate both neurons that encode features critical to identification of a
stimulus (identification-critical neurons), as well as many additional neurons that encode
identification-irrelevant features (identification-irrelevant neurons). RS upon repetition
results from repeated activation of the identification-critical neurons, which are thought
to repeatedly inhibit the more numerous but less active identification-irrelevant neurons,
lowering overall BOLD response. The Predictive Codingmodel proposed by Friston (2005)
is somewhat more complex, but has been argued to constitute a higher-level description
of processes that lead to RS throughmechanisms described by Facilitation and Sharpening
models (Friston, 2012; Henson, 2012; Desimone, 1996).
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similarity was not sufficient to explain LO'sMVP-similarity results. Fur-
thermore, our behavioral confusability similarity matrix was based on
the data from a larger set of objects (Gregory and McCloskey, 2010),
and the observed correlationwith thismodel suggests that our stimulus
object's similarity pattern is representative of the other objects in that
study.

Perhaps the most striking result concerned the dissociation be-
tween RS and MVP-similarity. Whereas MVP-similarity in LO was
significantly related to the confusability of orientations, we found
no such relationship in RS analyses of the same region. Davis et al.
(2014) recently showed that univariate measures (such as RS)
are specifically sensitive to variance in effect size across partici-
pants, whereas MVPA measures are robust to such differences, po-
tentially explaining some cases in which significant MVPA results
are observed in the absence of RS. This would be a plausible expla-
nation of the dissociation between MVP-similarity and RS observed
here if all or a majority of our participants showed some trend to-
ward greater RS for more confusable orientations, and simply var-
ied in the size of this effect. However, this was not observed.
Response to OPAs was virtually identical to response to EVAs in Ex-
periment 2 across participants, and in Experiment 1 roughly half of
participants showed a reduced response to OPA reflections relative
to EVA reflections, whereas the other half showed the opposite or-
dering. This is the pattern of results expected if there were no RS ef-
fect at all, rather than a reliably present RS effect with variable effect
size.

In LO, although no RS was observed for OPA and EVA reflections,
we did observe RS for identical repetitions. However, in V1 even
identical repetitions did not elicit RS, despite producing highly cor-
related multi-voxel patterns. Some previous studies have also
failed to observe RS in V1 (Ewbank et al., 2005; Grill-Spector
et al., 1999; Sayres and Grill-Spector, 2008; Weiner et al., 2010). A
potential explanation is that RS for orientation in V1 is especially
sensitive to timing parameters (Boynton and Finney, 2003; Fang
et al., 2005). This raises the possibility that at a different ISI or
with a prolonged adapting stimulus, we would have observed sig-
nificant RS for identical repeats in V1, and that the duration of RS
was simply not optimal for V1 in this experiment. While this is a
plausible explanation, given the trend toward RS for identical rep-
etitions in V1 (see Fig. 8), the failure to find a significant effect
should not be over-interpreted.

General discussion

Previous studies finding similar neural representations for mirror
images (Axelrod and Yovel, 2012; Dilks et al., 2011; Freiwald and
Tsao, 2010; Kietzmann et al., 2012; Rollenhagen andOlson, 2000) raised
the possibility that object-selective cortex is sensitive to the behavioral
confusability of different orientations of an object. The present study
explored this possibility systematically. Using RS (Experiments 1 and
2) and MVP-similarity (Experiment 2), we assessed the similarity of
neural representations for two types of mirror image (OPA and EVA
reflections) aswell as other orientation relationships that vary in behav-
ioral confusability.

MVP-similarity analyses in LO revealed a neural correlate of the
actual mirror image confusion errors commonly made by partici-
pants (Gregory and McCloskey, 2010). Specifically, multi-voxel pat-
terns were reliably more correlated for highly confusable OPA
reflections than for rarely confused EVA reflections. This sensitivity
to behavioral confusability extended to other orientation changes,
and was robust even after accounting for similarity in low-level
image properties.

RS analyses, however, showed a very different pattern. In
Experiment 1, neural responses to OPA and EVA reflections in
LO were not statistically distinguishable, and neither elicited
any more RS than presentations of different objects. Experiment
2 again found no difference in RS between OPAs and EVAs in
the same data for which MVP-similarity effects were observed.
Even when a broader range of orientation changes was consid-
ered, no relationship was found between RS and behavioral
confusability.

In the following discussion, we develop a working hypothesis to ac-
count for the seeming inconsistency between RS andMVP-similarity. To
interpret our RS findings, we adopt the widely-accepted view that RS
between two stimuli depends on an overlap in the neural populations
responding to them (Grill-Spector and Malach, 2001). To interpret the
MVP-similarity results, we posit that the correlation of multi-voxel pat-
terns is sensitive to the anatomical clustering patterns of neural
populations.

Relating RS and MVP-similarity: a working hypothesis

RS is sensitive to overlap of neural populations
Different models of RS posit different neural mechanisms to explain

the reduced BOLD response observed for repeated stimuli (Grill-Spector
et al., 2006; Gotts et al., 2012). However, all currentmodels share the as-
sumption that RS occurs only (although not necessarily always) when
two stimuli activate some of the same neurons (Grill-Spector and
Malach, 2001).3 This basic premise is sufficient for our interpretation
of RS, which states that RS effects are sensitive to whether or not two
stimuli activate overlapping sets of neurons.

MVP-similarity is sensitive to anatomical clustering of neural populations
Unlike RS, MVPA does not straightforwardly reflect whether two

stimuli activate the same neural populations. Mostmulti-voxel analyses
use the voxel's overall response to a stimulus (e.g. beta weight or t-
value) to define themulti-voxel pattern for that stimulus. This voxel
response is subject to the “averaging problem” often cited to moti-
vate the RS approach (Grill-Spector and Malach, 2001; Malach,
2012). The averaging problem arises when a voxel responds simi-
larly to two different stimuli, and the question is raised whether
the same neurons are responding to both stimuli. Since the voxel's
response reflects the activity of all of its constituent neurons, two
different stimuli may elicit an equivalent response in a voxel by
1) activating the same neural population, or 2) activating distinct
neural populations within that voxel. The averaging problem refers
to the fact that, at the level of the voxel's response, these two situa-
tions cannot be distinguished.

Although the averaging problem is typically illustrated with a single
voxel, it is of special relevance for multi-voxel analyses. The case in
which many voxels respond similarly to two stimuli is exactly when a
high multi-voxel correlation is observed. We illustrate this point
schematically in Fig. 13, considering how the multi-voxel correlation
between two stimuli varies based on whether they activate the same
or different neural populations. We consider three different hypotheti-
cal cases of interest.

In hypothetical Case 1 (Fig. 13A), both Stimulus 1 and Stimulus 2 ac-
tivate the same population of neurons, represented by the yellow dots



4 Although not directly relevant to the present results, it is also of interest to understand

Fig. 13.MVP-similarity andhypothetical underlying neuronal responses. Yellowdots represent active neurons responding above baseline. Bluedots represent inactive neurons responding
at baseline. (A) In Case 1, two stimuli activate the same population of neurons, producing a similarmulti-voxel pattern leading to highmulti-voxel correlations. (B) In Case 2, the neuronal
populations responding to each stimulus are "clustered" or reliably nearby, activating the same voxels and thereby eliciting similar multi-voxel patterns. (C) In Case 3, the two stimuli
activate distinct neurons that are not clustered, activating different voxels and leading to low multi-voxel correlations.
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in Voxel 1. Considering the voxel responses that would be produced,
both stimuli would activate Voxel 1 to some extent, but not Voxel 2.
As a result, the pattern of responses across voxels produced by Stimulus
1 (high response in Voxel 1, and a low/baseline response in Voxel 2) is
similar to that produced by Stimulus 2, and the multi-voxel correlation
between them would be relatively high.

In Case 2 (Fig. 13B), Stimulus 1 and Stimulus 2 activate different sets
of neurons, but those neurons are anatomically clustered so as to be
sampled by the same voxel (Voxel 1). Again, both stimuliwould activate
Voxel 1 but not Voxel 2, eliciting a high multi-voxel correlation. This
case demonstrates the averaging problem as it applies to multi-voxel
analyses: even when two stimuli activate different neural populations,
they may produce correlated multi-voxel patterns.

Critically, however, this effect requires that the different neural pop-
ulations are situated in the same measured voxel. In Case 3 (Fig. 13C),
Stimulus 1 and Stimulus 2 activate distinct neural populations that, in
addition, are located in different voxels. The two stimuli would now
activate different voxels, producing different patterns of responses and
a low multi-voxel correlation.

This example is highly simplified, but nevertheless illustrates a key
point. The observation of a high multi-voxel correlation for two stimuli
is consistent with either Case 1 or Case 2: stimuli may activate the same
(Case 1), or distinct-yet-reliably-clustered (Case 2) neural populations.
A key advantage of supplementing MVP-similarity results with RS
analyses is precisely the ability to disambiguate these two cases.
Given a high MVP correlation, RS provides an independent method
for determining whether the correlation is due to activation of over-
lapping versus distinct neural populations. Further, if it can be deter-
mined that high multi-voxel correlations arise from activation
of distinct neural populations (i.e., that Case 2 holds), we gain in-
sight into the topographical distribution of neural populations in
cortex—information not necessarily provided by RS analyses alone.
We demonstrate this point by applying our working hypothesis to
the current results to elucidate how object orientation is represent-
ed in LO.
how one might observe RS without MVP-similarity (Drucker and Aguirre, 2009, Ward
et al., 2013). To explain how stimuli represented by distinct neural populations can pro-
duce correlated MVPs, we emphasize that those distinct neural populations must be reli-
ably clustered. This emphasis on “reliably” is important: for two stimuli to produce
correlatedMVPs, they must elicit similar responses across many voxels. If the neural pop-
ulations activated by two stimuli were clustered only in a small portion of cortex sampled
by a few voxels, with no clustering relationship holding for the majority of measured
voxels, the fact that they elicit similar responses in that small subset of voxelsmaynot out-
weigh the fact that in most voxels, they elicit unrelated responses.
Similar considerations can explainhow stimuli that activate the sameneurons, andpoten-
tially elicit RS, can nonetheless fail to produce correlatedMVPs. For example, if two stimuli
activate the same neurons in a region encompassed by 10 voxels, but an MVP-similarity
analysis includes those voxels as well as 90 others not involved in representing the stim-
ulus, the similarity of response in those 10 voxels may be “washed out” by the inclusion of
those additional 90 voxels in the analysis.
Object orientation in LO: the working hypothesis applied to the present
results

Consider first our results for Identical orientations. The multi-voxel
patterns for Identical orientations (i.e., the patterns for the same
stimulus across runs) were correlated, a result that may reflect either
activation of the same (Case 1) or distinct-yet-clustered (Case
2) neural populations. RS analyses revealed that successive presen-
tations of Identical orientations elicited RS, supporting the Case 1
scenario (Fig. 13A).
The results for OPA reflections were importantly different. Like
Identical orientations, OPA reflections elicited significant multi-voxel
correlations, consistent with either Case 1 or Case 2. However, OPA re-
flections did not induce RS, suggesting that different neural populations
are activated by each stimulus. Together, these results suggest that
distinct-yet-reliably-clustered neural populations respond to OPA re-
flections, similar to Case 2 (Fig. 13B).

Finally, multi-voxel patterns for EVA reflectionswere not correlated,
and also did not elicit RS. These results are consistent with Case 3
(Fig. 13C), suggesting that EVA reflections activate distinct neurons
that also are not reliably clustered in the same voxels.

In sum, the difference between OPA and EVA reflections seems to
be topographical: OPA reflections are represented by distinct-yet-
clustered neural populations, whereas EVA reflections are not.4 In
the final section, we discuss the functional relevance of neural clus-
tering. First, we discuss how our working hypothesis relates to previ-
ous work on the MVPA–RS relationship, and discuss its critical
assumptions.
Relations to previous work

The working hypothesis presented here builds on an account
discussed by Drucker and Aguirre (2009) concerning the neural basis
of MVPA. Drucker and Aguirre suggest that significant MVPA decoding
for a stimulus indicates the presence of a “coarse spatial code” for that
stimulus. However, the nature of this code is not discussed in detail so
as to generalize beyond the context of object shape representation. In
contrast, we have offered a specific and generalizable hypothesis
about the neural basis of MVP-similarity, on which it is sensitive to the
anatomical clustering patterns of neural populations. We have shown
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how different clustering patterns may lead to different MVPA results in
a manner that is not tied to any particular stimulus type or property.

Other work has discussed additional differences between RS and
MVPA consistent with, but not explicitly described by our working hy-
pothesis. Epstein and Morgan (2012) discuss the account provided by
Drucker and Aguirre (2009) as well as two additional hypotheses on
whichMVPA differs from RS 1) in its sensitivity to neural outputs as op-
posed to inputs, and 2) in virtue of reflecting a bottom-up instead of a
top-down component of stimulus representation. As we understand
them, these hypotheses are not mutually exclusive with the present ac-
count. Rather, they describe additional dimensions along which RS and
MVPA could potentially differ. In a similar vein, Davis et al. (2014)
showed that univariate measures like RS are more sensitive to variance
in effect size across participants, whereas MVPAmeasures are robust to
such differences. We have argued in the Experiment 2 discussion that
this is unlikely to explain the present results, although such factors
could potentially explain other dissociations between RS and MVPA.

Assumptions of the working hypothesis

In interpreting RS effects, we have adopted the widely-shared as-
sumption that RS is sensitive towhether two stimuli activate overlapping
neural populations. However, this assumptionmay be challenged. For in-
stance, RS effects are known to be modulated by experimental factors
such as the lag between stimuli (Epstein et al., 2008). This would seem
to create difficulties for attempts to read properties of neural representa-
tion directly from RS effects. We agree that the effect of lag should not be
ignored—as discussed in the Experiment 2 discussion, we believe that
such factorsmay explain our failure tofind significant RS for V1.However,
the fact that RS is sensitive to such experimental factors is not inconsistent
with the claim that neural overlap is a necessary condition for observing
RS, the view we advocate here. Two stimuli may activate the same neu-
rons but fail to show RS for other reasons, and one must keep this in
mind when interpreting failures to observe RS in specific cases. In the
present case, given that LO showed RS to identical repetitions at the
present lag, our failure to find RS for OPA reflections and EVA reflections
cannot readily be explained by a general failure to observe any RS at
this lag.

Ourworking hypothesis alsomakes several simplifying assumptions
concerning MVP-similarity. In our examples, each stimulus activated a
similar number of neurons, but in practice this cannot generally be as-
sumed. It will be important to understand howmulti-voxel correlations
behave as a function of differences in the number of neurons that two
stimuli activate. The scale of the clustering patterns is also important.
Specifically, with sufficiently small clustering patterns relative to voxel
size, even comparatively distant neural populations may fall within
the same voxel just as often as clustered populations. Under such cir-
cumstances, no differences would be detectable in the magnitude of
multi-voxel correlations for distant as comparedwith reliably clustered
neural populations, suggesting thatMVP-similarity analysesmay not be
able to detect clustering patterns at all scales. Although further develop-
ment is needed,we believe that thisworking hypothesis provides a sim-
ple, clear and plausible account of an important difference between
MVPA and RS.

The functional relevance of neural clustering

We have suggested that analyses of multi-voxel similarity patterns,
especially when used in conjunction with RS analyses, may provide a
tool for revealing aspects of neural topography. Using this approach,
we have argued that neurons responding to OPA reflections are more
reliably clustered together than neurons responding to EVA reflections.
These results join several recent findings showing that perceptually
similar stimuli elicit correlated multi-voxel patterns (Drucker and
Aguirre, 2009; Haushofer et al., 2008; Mur et al., 2013; Op de Beeck
et al., 2008), raising the intriguing hypothesis that these similarity
patterns arise because perceptually similar stimuli are often represent-
ed by clustered or anatomically nearby neural populations.

Potentially illuminating hypotheses about the functional relevance
of neural clustering patterns are found in the literature on cortical col-
umns (Mountcastle, 1978; Mountcastle, 1997; Rockland and Ichinohe,
2004; Tanaka, 2003). According to the “common input” hypothesis,
neurons may cluster together because they receive inputs from the
same source, presumably from neurons in an earlier processing stage.
Given thatOPA reflections elicit similar retinal projections, it is plausible
that the neurons that represent a given orientation and those that rep-
resent its OPA reflection would receive input from some of the same
early visual neurons. EVA reflections are far more variable in this re-
spect, often eliciting quite different retinal projections. Thus, common
inputs from early retinotopic regions may partly explain LO's clustering
patterns. However, this account only readily explains clustering pat-
terns for stimuli that produce similar retinal projections, yet correlated
multi-voxel patterns have been observed for stimuli that are similar in
more abstract ways (e.g., in terms of being animate versus inanimate,
Mur et al., 2013). In addition, as we have argued above, LO's multi-
voxel similarity patterns cannot be entirely accounted for by retinotopy.

The “common output” hypothesis, in contrast, suggests that cells
cluster based onwhere they send their output. OPA reflections plausibly
elicit similar action affordances (for example, the positioning of the
hand in order to grasp and interact with an object will often be similar
for a given orientation and its OPA reflection), suggesting a common
output signal to neurons involved in action planning (Culham and
Valyear, 2006). EVA reflections, on the other hand, would often require
quite different grasping postures. Recentwork finds that reciprocal con-
nections between ventral and dorsal streams are widespread in theMa-
caque (see Kravitz et al., 2013 for a review), suggesting that connections
between LO and dorsal stream regions involved in action are not
implausible.

Finally, it remains an open possibility that clustering patterns are
epiphenomenal, serving no functional purpose (Horton and Adams,
2005), although on this view the relationship between the behavioral
confusability of OPA reflections and their clustering patterns would be
somewhat mysterious. Of course, these interpretations are purely spec-
ulative and require measures of neural clustering and connectivity at a
much finer scale to be seriously tested. Nonetheless, we believe that
questions about neural topography are of great interest to neuroscience,
and that by combining two common fMRI methods, researchers can
address them.

Conclusion

The present study found a clear dissociation between Repetition
Suppression (RS) and multi-voxel pattern similarity (MVP-similarity)
in region LO. This dissociation can be explained by a simple working
hypothesis: MVP-similarity is sensitive to whether stimuli activate ana-
tomically clustered neuronal populations, whereas RS is sensitive to
whether they activate the same neuronal populations. This hypothesis
not only accounts for our results but may also account for other appar-
ent discrepancies between RS and MVPA reported in the literature.
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