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Park J, Park S. Conjoint representation of texture ensemble and
location in the parahippocampal place area. J Neurophysiol 117:
1595–1607, 2017. First published January 25, 2017; doi:10.1152/
jn.00338.2016.—Texture provides crucial information about the cat-
egory or identity of a scene. Nonetheless, not much is known about
how the texture information in a scene is represented in the brain.
Previous studies have shown that the parahippocampal place area
(PPA), a scene-selective part of visual cortex, responds to simple
patches of texture ensemble. However, in natural scenes textures exist
in spatial context within a scene. Here we tested two hypotheses that
make different predictions on how textures within a scene context are
represented in the PPA. The Texture-Only hypothesis suggests that
the PPA represents texture ensemble (i.e., the kind of texture) as is,
irrespective of its location in the scene. On the other hand, the Texture
and Location hypothesis suggests that the PPA represents texture and
its location within a scene (e.g., ceiling or wall) conjointly. We tested
these two hypotheses across two experiments, using different but
complementary methods. In experiment 1, by using multivoxel pattern
analysis (MVPA) and representational similarity analysis, we found
that the representational similarity of the PPA activation patterns was
significantly explained by the Texture-Only hypothesis but not by the
Texture and Location hypothesis. In experiment 2, using a repetition
suppression paradigm, we found no repetition suppression for scenes
that had the same texture ensemble but differed in location (support-
ing the Texture and Location hypothesis). On the basis of these
results, we propose a framework that reconciles contrasting results
from MVPA and repetition suppression and draw conclusions about
how texture is represented in the PPA.

NEW & NOTEWORTHY This study investigates how the parahip-
pocampal place area (PPA) represents texture information within a
scene context. We claim that texture is represented in the PPA at
multiple levels: the texture ensemble information at the across-voxel
level and the conjoint information of texture and its location at the
within-voxel level. The study proposes a working hypothesis that
reconciles contrasting results from multivoxel pattern analysis and
repetition suppression, suggesting that the methods are complemen-
tary to each other but not necessarily interchangeable.

multivoxel pattern analysis; parahippocampal place area; repetition
suppression; scene perception; texture

IN A CONSTANTLY CHANGING WORLD, the ability to process visual
scenes is important for recognition of specific locations and
navigation. Previous literature reveals that people can recog-

nize scenes even with just a brief glance (Potter 1976; Schyns
and Oliva 1994; Thorpe et al. 1996; VanRullen and Thorpe
2001). Such an effortless ability is supported by a network of
cortical regions specialized in processing visual scenes.
Among these cortical regions, the best-studied region is per-
haps the parahippocampal place area (PPA; Epstein and Kan-
wisher 1998), which is located in the posterior part of the
parahippocampal gyrus in the medial temporal lobe. The PPA
responds more strongly to pictures of scene categories, houses,
landmarks, and spatial structure (e.g., lines that define spatial
layout of 3-dimensional scene) than to pictures of objects or
faces (Aguirre et al. 1998; Epstein et al. 1999; Epstein and
Kanwisher 1998; Epstein and Morgan 2012; Kravitz et al.
2011; Morgan et al. 2011; Park et al. 2011; Park and Chun
2009; Walther et al. 2009, 2011). Neurological evidence also
supports the specialized role of the parahippocampal cortex
(PHC) in scene recognition. Patients with lesions in the PHC
show difficulty in recognizing pictures of familiar places or in
wayfinding (Aguirre and D’Esposito 1999; Barrash et al. 2000;
Takahashi and Kawamura 2002). Since its discovery, the PPA
has been the main focus of studies investigating visual scene
perception, recognition, and memory.

Although the PPA has been extensively studied as an area
that primarily represents the geometric structure of scenes,
recent studies suggest that the representational properties of the
PPA are much richer. For example, Bar and Aminoff (2003)
proposed that the PHC is activated by highly contextual objects
(i.e., objects that are frequently associated with a certain
context, such as road signs or a refrigerator) (Bar et al. 2008).
Moreover, the posterior PHC, including the PPA, shows a
preference for real-world-sized large objects (e.g., a couch or
refrigerator) compared with small objects (e.g., a cup or ring)
even when the retinal sizes of the objects are controlled
(Konkle and Oliva 2012). The PPA even responds to small
objects that have crucial value in navigation. In navigation in a
virtual reality maze, the PPA shows higher activation to objects
that are placed at navigational decision points (e.g., a corner
where participants could turn either left or right) than to objects
that are placed at navigationally irrelevant points (Janzen and
Jansen 2010; Janzen and van Turennout 2004). In accordance
with findings from Konkle and Oliva and Janzen’s group, a
study by Troiani et al. (2014) also shows that the PPA activity
is closely related to the visual size and landmark suitability of
objects. These findings together suggest that the representa-
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tional properties of the PPA are complex and go beyond the
spatial aspects of a scene.

In this report, we focus on one of the PPA’s newly discov-
ered representational properties: texture information. Cant and
Goodale (2007, 2011) have shown that the PPA responds to
patches of textures or to textures on object surfaces. For
example, the PPA showed higher activation when participants
paid attention to the surface of objects (e.g., texture or material
properties) than when they paid attention to the shape of
objects, whereas the lateral occipital area demonstrated the
reverse pattern of activation. Further study using a repetition
suppression method showed that the PPA is sensitive to change
in the ensemble (statistical summary) of texture information.
Repetition suppression is the reduction of a signal when a
stimulus repeats twice. Importantly, the amount of repetition
suppression allows testing of representational properties of a
particular brain region; for example, it tests whether a partic-
ular brain region treats two stimuli that share a particular
property similarly or differently. Cant and Xu (2012, 2015)
found that the PPA showed a repetition suppression effect for
images that were not identical but shared the same texture
ensemble.

How is texture represented in the PPA? Cant and Xu (2012)
suggest that the response patterns of the PPA to texture
ensemble are distinct from the response patterns of the lateral
occipital area, hinting at the PPA’s unique involvement in
processing textures. Interestingly, these studies used simple
texture patches that did not have any spatial or navigational
context associated with them. However, in natural scene per-
ception, texture patches often appear at specific locations
within a scene. The combination of texture and other attributes,
such as the texture’s location in a scene, helps to define the
category or identity of a scene (Epstein and Julian 2013; Oliva
and Torralba 2006). For example, a scene that has grass texture
at the bottom of the image is more likely to be “a field,”
whereas a scene that has the same grass texture at the top of the
image is more likely to be “a mountain.” Similarly, indoor
scenes with identical spatial layout (i.e., spatial layout refers to
permanent geometric shape of a space that is not changed by
viewpoints) may be recognized as two different places based
on whether a certain texture is located on the wall or the floor.
Thus it seems plausible that texture information in a scene is
represented conjointly with spatial location information.

Indeed, recent evidence from macaque monkey functional
MRI (fMRI) and single-cell recording (Kornblith et al. 2013)
suggests that neurons in scene-specific regions of the monkey
cortex are modulated not only by texture alone but also by the
combination of texture and other factors, such as depth, view-
point, and object identity. Kornblith and colleagues (2013)
localized two anatomically discrete areas in the macaque mon-
key brain with fMRI and cell recording techniques: the lateral
place patch, located in the occipitotemporal sulcus anterior to
the V4 area, and the medial place patch in the medial parahip-
pocampal gyrus. When monkeys viewed artificial room im-
ages, spatial features such as viewpoint or depth alone did not
suffice to modulate neurons in the lateral place patch or the
medial place patch. Instead, these neurons were most strongly
modulated by texture alone, followed by texture with view-
point or depth (Kornblith et al. 2013). These findings suggest
that there are neurons in scene-selective cortex of monkeys that

code texture information conjointly with other spatial attributes
in a scene.

There were two aims of this study. First, we investigated
how the PPA represents texture information within a scene.
Two competing hypotheses about texture representation in the
PPA were directly tested. The first hypothesis is that the PPA
represents the texture ensemble (i.e., the kind of texture) as is,
irrespective of the spatial locations in a scene (Texture-Only
hypothesis). The second hypothesis is that the PPA represents
the texture and its location information conjointly (Texture and
Location hypothesis). To test these hypotheses, we generated
synthetic room images that consisted of back wall, ceiling, floor,
and left and right walls. Critically, we manipulated the location of
specific textures within a scene by swapping the texture of the left
and right walls with that of the ceiling and the floor. This
manipulation results in different combinations of texture and
location while maintaining the same overall texture ensemble of a
scene. If the PPA represents texture ensemble independent of
texture locations (Texture-Only hypothesis), then the PPA will
not be sensitive to this manipulation; in other words, even if
these two images look like different places, because the texture
ensemble is the same PPA will not distinguish between the
images. On the other hand, if the PPA represents each texture
conjointly with its location (Texture and Location hypothesis),
we would expect different representations for different combi-
nations of texture and location.

Second, we aimed to shed light on an issue that has been a
puzzle in the field: contradicting results from multivoxel pat-
tern analysis (MVPA) and repetition suppression. An increas-
ing number of studies have reported an apparent discrepancy
between the results from these two methods (Drucker and
Aguirre 2009; Epstein and Morgan 2012; Ward et al. 2013).
Although a rough idea that these methods capture different
aspects of neural representation was suggested, here we at-
tempt to provide a more specific and mechanistic explanation
for such difference. To investigate this question, we conducted
two experiments using MVPA and the repetition suppression
paradigm. In experiment 1, we used representational similarity
analysis to ask whether multivoxel patterns (MVPs) in the PPA
align with the Texture-Only or Texture and Location hypoth-
esis. In experiment 2, we used the repetition suppression
paradigm to ask whether the two scenes that share a texture
ensemble or both texture and location show repetition suppres-
sion in the PPA. Both methods test representational properties
of the PPA, but they capture different aspects of neural simi-
larity. In DISCUSSION, we propose a working hypothesis that can
reconcile the observed discrepancy between MVPA and repe-
tition suppression and suggest that the combined use of MVPA
and repetition suppression methods allows us to investigate
different levels of neural organization in an area.

MATERIALS AND METHODS

Experiment 1

Subjects. Eleven participants (4 women, 7 men; 2 left-handed; ages
19–28 yr) were recruited from the Johns Hopkins University com-
munity for financial compensation. One participant in experiment 1
was excluded from the analysis because his/her PPA was not local-
ized. All had normal or corrected-to-normal vision. Written informed
consent was obtained, and the study protocol was approved by the

1596 CONJOINT TEXTURE REPRESENTATION IN PPA

J Neurophysiol • doi:10.1152/jn.00338.2016 • www.jn.org

 by 10.220.33.1 on D
ecem

ber 5, 2017
http://jn.physiology.org/

D
ow

nloaded from
 

http://jn.physiology.org/


Institutional Review Board of the Johns Hopkins University School of
Medicine.

Stimuli. To systematically manipulate the type and location of the
textures within a scene, we generated artificial room images with the
software SketchUp and Adobe Photoshop CS6. Images were pre-
sented in 600 � 600-pixel resolution (4.5° � 4.5° visual angle) in the
scanner with an Epson PowerLite 7350 projector (type: XGA, bright-
ness: 1,600 ANSI lumens). Each room image was composed of back
wall, ceiling, floor, left wall, and right wall. The back wall included a
door and light fixtures and was held constant across different images
(Fig. 1A). Two kinds of texture composed a single texture “ensem-
ble”: for example, in one of the scenes, texture 1a was used on both
the ceiling and floor and texture 1b was used on the left and right walls
to comprise texture ensemble 1. The ceiling and floor consistently had
the same texture, as did the left and right walls. A texture ensemble
(e.g., texture 1a and texture 1b) was used for each image, instead of
a single texture (e.g., texture 1a only), to enable the Texture and
Location manipulation. For example, in half of the stimuli that have
texture ensemble 1, the location of textures that comprise a texture
ensemble was swapped, such that texture 1a was on the left and right
walls and texture 1b was on the ceiling and floor. Changing the
location of textures while keeping the same texture ensemble was
critical to test the Texture and Location hypothesis, because this
hypothesis predicts that the PPA will be sensitive not only to the
texture but also to the combination of the texture and its location.

In experiment 1, there were eight different stimuli, each represent-
ing one condition (Fig. 1A). These eight conditions were created from
the combination of three factors: 2 texture ensembles (Ens) � 2
texture locations (Loc) � 2 viewpoints (View). First, the texture
ensemble was changed by changing the kinds of texture used in an
image (e.g., hypothetically, ensemble 1 is composed of wood and
brick; ensemble 2 is composed of stone and bamboo). Second,
different combinations of the texture and location were generated,
while keeping the texture ensemble constant. Within the images that
share the same texture ensemble (e.g., ensemble 1), the location of
texture was changed. For example, the wood texture (on the ceiling
and floor) and the brick texture (on the left and right walls) swapped
locations so that the brick texture was on the ceiling and floor and the
wood texture was on the left and right walls. Critically, this manip-
ulation allowed us to test whether the PPA represents the texture
ensemble in a scene (Cant and Xu 2012) regardless of their location
in a scene. Third, viewpoints of the images changed within the images
that share the same texture ensemble and texture location. Half of the
stimuli were front views, while the other half were side views. Note
that this viewpoint change, unlike the spatial structure change in Lowe
et al. (2016), did not necessarily alter the spatial layout of the room.
For that reason, we did not expect a strong modulation by the
viewpoint, and it was not a factor of interest. Nonetheless, this factor

was included in the analysis to test whether the PPA shows an effect
of a specific viewpoint over the texture ensemble or its location.

Stimuli ratings. Before scanning, an independent behavioral exper-
iment was run to test whether participants recognized the change in
texture location. Behavioral ratings were obtained from Amazon
Mechanical Turk (n � 26) for all possible pairs within the complete
stimuli set. Participants saw pairs of images and were asked to judge
the likelihood that the two images were from the same room. Re-
sponses were selected from four possible options: 1 (definitely differ-
ent rooms), 2 (somewhat different rooms), 3 (somewhat the same
room), or 4 (definitely the same room).

The average rating difference between the same and different
texture ensemble conditions was significant [t(31) � 7.63, P � 0.01].
This indicates that images that shared the same texture ensemble were
considered to be more similar to each other than to the images that had
different texture ensembles. On the other hand, within the same
texture ensemble, there was a significant difference between two
scenes that had the same texture but differed in location [t(15) �
80.47, P � 0.01]. In other words, even when images shared the same
texture ensemble, if the location of specific texture was different
within a scene people perceived them as different places. This indi-
cates that participants were able to recognize changes in the texture
location within our stimuli set and that two scenes with the same
texture ensemble are recognized as two different places when the
texture locations within a scene differ.

Experimental design. Experiment 1 consisted of six runs [each 5.3
min, 160 repetition time (TR)]. In each run, there were eight experi-
mental conditions with five trials per conditions, resulting in 40 trials
per run. Each image was displayed for 1.5 s, followed by 0.5 s blank
with a jittered interstimulus interval (2–14 s; average of 6 s). Partic-
ipants were asked to judge whether the current image was the same as
or a different room from the previous image (Fig. 1B) by pressing a
corresponding button (1: the same room, 2: different rooms).

In both experiments, the trial order was optimized by using
Optseq2 (http://surfer.nmr.mgh.harvard.edu/optseq) to maximize the
efficiency of estimating beta weights for a fast event-related design.
The stimuli presentation and the experiment program were produced
and controlled by MATLAB and Psychophysics Toolbox (Brainard
1997; Pelli 1997).

Multivoxel pattern analysis and representational similarity analysis.
In experiment 1, MVPs of activity across time were extracted from the
PPA. A general linear model (GLM) was run with six motion
parameters added as predictors of no interest, and each condition was
modeled with 10 finite impulse response (FIR) functions. An impulse
function was set every TR (2 s); thus the model covered 20 s after the
onset of stimulus. To obtain the statistically valid peak response for
each condition, we ran a group-based t-test, following a conventional
method that was used in many previous studies (Cant and Xu 2012;

500 ms  

BA

1.5 s 

5

Jittered 
ISI 

Ens1Loc2View1

Texture 
Location 1 

Texture Ensemble 1            Texture Ensemble 2 
Texture 

Location 2 
Texture 

Location 1 
Texture 

Location 2 

Ens1Loc1View1

Ens1Loc1View2 Ens1Loc2View2

Ens2Loc1View1 Ens2Loc2View1

Ens2Loc1View2 Ens2Loc2View2

1 trial (2 s)

Fig. 1. Experiment 1 conditions and procedure.
A: gray-scaled versions of stimuli used in the
present study. The combination of 3 factors
(Texture Ensemble, Texture Location, and
Viewpoint) resulted in 8 different conditions.
Four images on left (e.g., Ens1Loc1View1)
share texture ensemble 1, and 4 images on right
(e.g., Ens2Loc1View1) share texture ensem-
ble 2. Images in the same column (e.g.,
Ens1Loc1View1 and Ens1Loc1View2) share
the same “Texture and Location” combina-
tion. B: in each trial, an image was displayed
for 1.5 s, followed by 0.5 s blank and a jittered
interstimulus interval.
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Dilks et al. 2011; Kourtzi and Kanwisher 2001; O’Craven et al. 1999;
Xu and Chun 2006).

After running the GLM with 10 FIR functions, we obtained 10
betas for each voxel for each condition. We averaged the betas across
voxels for each condition, resulting in an 8 (conditions) � 10 (time
points) matrix. Then, we averaged the betas across conditions, result-
ing in a 1 � 10 (time points) matrix. Among those 10 time points, we
identified the numerically highest one (e.g., 5th time point). However,
the difference between the numerical peak and its neighboring time
points (e.g., 4th and 6th time points if the 5th time point is the
numerical peak) could be marginal. To account for such cases, we did
a pairwise t-test between the numerical peak and each of its neigh-
boring time points (t test, P � 0.05, 1-tailed; Epstein et al. 2003;
Marois et al. 2004; Park et al. 2007). If there was a significant
difference, then only the numerical peak was chosen. If there was not
a significant difference, then the compared neighboring time point was
also chosen. In case where there was more than one chosen time point,
the average value of the chosen time points was used for further
analysis.

Then we constructed a pattern similarity matrix, using MVPs (beta)
of the statistical peak time point. A pairwise correlation (Pearson r)
was computed for MVP of all possible condition pairs. This generated
an 8 � 8 similarity matrix of the correlations between each pair of
conditions. The similarity matrix was computed separately for each
individual participant. These similarity matrices were later averaged
together for a groupwise similarity matrix.

To test our main hypotheses, we ran a multiple linear regression
with the fMRI similarity matrix. The regression analysis was done
with both the groupwise similarity matrix and each participant’s
similarity matrix to confirm the results from the group level. Predic-
tive representational model matrices were constructed based on each
hypothesis and used as predictors in the regression analysis. The
Texture-Only predictor is based on the hypothesis that the PPA is
sensitive to the texture ensemble only, independent of its location and
viewpoint within a scene. According to this hypothesis, the conditions
that share the same texture ensemble (e.g., Ens1Loc1View1 and
Ens1Loc2View1) will be represented similarly in the PPA (Fig. 2A)

regardless of different texture locations. The Texture and Location
predictor is based on the hypothesis that the PPA conjointly represents
the texture and its location information within a scene. In this case, if
two scenes have different combinations of texture and location, they
will be represented differently, even when they share the same texture
ensemble (Fig. 2B). The Viewpoint predictor is based on the hypoth-
esis that the PPA is sensitive to a specific viewpoint of a scene
independent of texture ensemble and texture location in a scene (Fig.
2C). We included the three predictors in the regression analysis to
predict the PPA similarity patterns. Since half of off-diagonal cells
(i.e., the lower left and the upper right triangle in the matrix) had
repeated values, we excluded those cells, as well as the diagonal cells,
when computing the correlation (Kriegeskorte et al. 2008).

Since our predictive matrices are not orthogonal to each other, we
computed the variance inflation factor (VIF) to address the multicol-
linearity issue. The VIF is one of the most widely used diagnostics for
multicollinearity, and this estimates how much the variance of coef-
ficient is inflated because of the dependence among predictors. When
there are two predictors in the regression, the VIF between Texture-
Only and Texture and Location is 1.3. When there are three predictors
in the regression, the VIFs between one factor and the other two
factors are 1.3 for Texture-Only, 1.4 for Texture and Location, and 1.1
for Viewpoint. VIF’s lower bound is 1, and the upper bound is not
clearly defined, but a VIF smaller than 2 is generally considered as
little or no collinearity.

It is noteworthy to mention that our predictive matrices are differ-
ent from confusion matrices, the sum of which needs to be matched
for each row between the matrices. In case of confusion matrices, true
values are known and the actual performance is compared with them.
Thus all predictive confusion matrices must be matched to the true
values. However, the predictive models in the present and many other
studies using representational similarity analysis (Kriegeskorte et al.
2008; Kriegeskorte and Kievit 2013; Nili et al. 2014; Watson et al.
2016) are conceptual models reflecting hypotheses about the repre-
sentations of a specific brain region. In other words, in our predictive
models there are no known true values to be matched.
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Texture  
Loc 2 
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Fig. 2. Predictive representational similarity matrices. Three predictive representational matrices are constructed. The white cells indicate high similarity between
2 conditions, and the gray cells mean low similarity between the pair. A: the first model is based on the Texture-Only hypothesis, so conditions that share the
same texture ensemble are colored white. B: the second model is based on the Texture and Location hypothesis, so conditions that share both same texture
ensemble and same location are colored white. C: the third model is based on the Viewpoint factor, so conditions that share the same viewpoint are colored white.
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A multidimensional scaling (MDS) plot was constructed to visu-
alize the similarity structure of the activation patterns in the PPA,
using the RSA (Representational Similarity Analysis) Toolbox
(Kriegeskorte et al. 2008; Nili et al. 2014). The MDS plot is a useful
way to visualize representational similarity, as it visually shows the
degree of similarity as proximity between conditions. Because the
location of each dot (condition) on the plot is determined in a way that
preserves the distance between each pair of conditions, conditions that
have high similarity in patterns of activity in the PPA will be plotted
close to each other, forming a cluster.

In addition to multiple linear regression, we used a rank correlation
method (Nili et al. 2014) to test experiment 1 data. We computed a
rank correlation (Kendall �A) between our fMRI data and each of the
three representational models (Henriksson et al. 2015; Nili et al. 2014;
Skerry and Saxe 2015; Wardle et al. 2016). In addition, we performed
two reliability tests as specified below.

First, we tested for potential biases due to an inequality of signal
energy among the model matrices. For example, it might be possible
that a model with more 1s (i.e., white cells in Fig. 2) than other models
could always lead to a higher correlation than other two models. To
test this, we performed simulation analyses for two major cases. First,
we simulated a case in which the data represent an ideal pattern for
each model types by adding noise to each model matrices. Second, we
simulated a case in which the actual data is purely noise. We
generated a similarity matrix according to each hypothetical case and
then compared this simulated data to each model matrix using a rank
correlation (Kendall �). Such simulation was repeated 10,000 times,
and the mean correlation coefficients for each model matrix were
computed. We found that a difference in model matrix energy does
not prevent an appropriate model from producing the highest corre-
lation value among three models. For example, even when the model
matrix energy is the lowest, it was able to produce the highest
correlation coefficient for the simulated data based on its own ideal
pattern. For the simulation case in which the actual data are purely
noise, we observed differences in correlation coefficients among the
models. To account for this potential bias between models, the
correlation coefficient values from this simulation were subtracted
from each model’s actual correlation coefficients.

Second, we computed the noise ceiling, which is the expected
correlation that can be obtained from the “true” model. This true
model was estimated by the average similarity matrix of all subjects,
and the lower and upper bound of the noise ceiling were calculated
using the subject variance in the data (Nili et al. 2014): the lower
bound was computed by averaging each individual’s correlation to the
average of the other subjects’ similarity matrices, whereas the upper

bound was computed by averaging each individual’s correlation to the
average of all subjects’ similarity matrices.

Experiment 2

Subjects. Eighteen participants (10 women, 8 men; 1 ambidextrous;
ages 18–30 yr) were recruited from the Johns Hopkins University
community for financial compensation. All had normal or corrected-
to-normal vision. Written informed consent was obtained, and the
study protocol was approved by the Institutional Review Board of the
Johns Hopkins University School of Medicine.

Stimuli. In experiment 2, the images were almost identical to those
used in experiment 1, except that experiment 2 had 256 texture
ensembles and one viewpoint. Similar to experiment 1, two kinds of
texture were used for every image to form a texture ensemble: one
texture on the ceiling and floor and another texture on the left and
right walls. To avoid the repetition of the same image, we made 256
different room images with nonrepeating textures. We then swapped
the texture on the ceiling and floor with the texture on the left and
right walls of these 256 images to obtain another 256 images that have
the same texture ensemble but different texture locations. Since the
same kind of stimulus manipulation was used in experiment 1, no
stimuli ratings were collected.

Experimental design. Experiment 2 consisted of four runs (each 5.8
min, 174 TR). In each run, there were three experimental conditions
of 16 trials, resulting in 48 trials per run. The number of each image
appearing in each condition was counterbalanced for every six par-
ticipants. For a set of six participants, the stimuli (256 images) were
first randomly divided into four groups (a group for each run), which
were further divided into four subgroups. Among these subgroups,
one subgroup was used for SameTexture-SameLocation, another sub-
group for SameTexture-DifferentLocation, and the other two sub-
groups for the DifferentTexture-DifferentLocation condition (Fig.
3A). The subgroups in each run were assigned according to the
predetermined combination, and the presentation order of images
within each subgroup was randomly decided. After running six
participants, the whole stimuli set of 256 images were shuffled again
and used for another set of six participants.

Each trial was 4 s (2 TR) long: 500-ms fixation, followed by two
images that were sequentially presented for 1 s each (each stimulus
was presented for 600 ms, followed by 400-ms blank period), with a
1.5-s blank period at the end (Fig. 3B). Each trial was followed by a
jittered intertrial interval with an average of 3 s (2–8 s). Participants
observed two images and responded as to whether the two images

BA

Same Texture 
Same Location 

Same Texture  
Different Location 

Different Texture  
Different Location 

500 ms 

1 trial (4 s) 

600 ms 6

1500 ms 
+  

Jittered ITI JitterJ

Fig. 3. Experiment 2 conditions and proce-
dure. A: there were 3 experimental condi-
tions in which an image could repeat: Same
Texture-Same Location condition, Same
Texture-Different Location condition, and
Different Texture-Different Location condi-
tion. B: for each trial, 2 images were pre-
sented in sequence. Each stimulus was pre-
sented for 600 ms, followed by a 400-ms
blank screen. At the end of each trial, there
was a 1.5-s blank period and a jittered in-
tertrial interval (ITI).
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were from the same room or different rooms by pressing the button (1:
the same room, 2: different rooms).

Repetition suppression. In experiment 2, we ran a GLM within each
region of interest (ROI) (ROI-based GLM), with six motion param-
eters added as predictors of no interest. Each condition was modeled
with 10 FIR functions. We obtained the statistical peak time point by
using the same method as in experiment 1. The peak beta values of
each condition were compared by the pairwise t-test. The critical
difference between experiments 1 and 2 was that experiment 2 used
univariate responses that were averaged across multiple voxels within
an ROI.

MRI acquisition and preprocessing. Imaging data were acquired
with a 3-T Philips fMRI scanner with a 32-channel phased-array head
coil at the F. M. Kirby Research Center for Functional Neuroimaging
at Johns Hopkins University. Structural T1-weighted images were
acquired by magnetization-prepared rapid-acquisition gradient echo
(MPRAGE) with 1 � 1 � 1-mm voxels. Functional images were
acquired with a gradient echo-planar T2* sequence [2.5 � 2.5 �
2.5-mm voxels; TR 2 s; TE 30 ms; flip angle � 70°; 36 axial 2.5-mm
sliced (0.5-mm gap); acquired parallel to the anterior commissure-
posterior commissure (ACPC) line]. Functional data were analyzed
with Brain Voyager QX software (Brain Innovation, Maastricht, The
Netherlands). Preprocessing included slice scan-time correction, lin-
ear trend removal, and three-dimensional motion correction. No
spatial or temporal smoothing was performed, and the data were
analyzed in individual ACPC space.

Parahippocampal place area. The PPA was defined for each
participant with a functional localizer independent of the main exper-
imental runs. In a localizer run, participants saw blocks of faces,
scenes, objects, and scrambled object images. A localizer run con-
sisted of four blocks per each of these four image conditions, each
block with 20 images (7.1 min, 213 TR). In each trial, a stimulus was
presented for 800 ms. Participants performed one-back repetition
detection tasks, in which they were asked to press a button whenever
they detected an immediate repetition of an image.

The PPA of each participant was functionally defined by contrast-
ing brain activity of scene blocks and face blocks (Epstein and

Kanwisher 1998). A cluster of contiguous voxels in the posterior
parahippocampal gyrus and collateral sulcus region that passed the
threshold (P � 0.0001) was defined as the PPA.

RESULTS

Experiment 1

We compared the representational similarity matrices gener-
ated from the actual fMRI data (Fig. 4A) to the three hypothetical
models. First, we ran a multiple linear regression to compare the
similarity matrix from the fMRI data to the model matrices. Three
predictors, Texture-Only hypothesis, Texture and Location hy-
pothesis, and Viewpoint, were put into the regression model. We
tested which predictor fits better with the group-level similarity
matrix from fMRI data, which was the averaged similarity
matrix of all participants. The beta coefficients from the re-
gression were 0.014 (P � 0.001) for the Texture-Only predic-
tor, �0.0061 (P � 0.31) for the Texture and Location predic-
tor, and 0.0003 (P � 0.93) for the Viewpoint predictor. Only
the Texture-Only predictor had a significant beta coefficient,
which means that only the Texture-Only predictor, and not the
Texture and Location or Viewpoint predictor, was related to
changes in the representational similarity matrix obtained from
the fMRI data. To confirm this result, we also ran the multiple
linear regression for each individual, separately estimating
each participant’s fMRI data with the predictive models. The
average beta coefficients of individual data were compared
among the models. One-way ANOVA showed that there is a
significant difference among the beta of the models [F(2,
27) � 9.14, P � 0.001]. Then, we compared the difference
between each pair of predictors, using a paired t-test (Fig. 4B).
The beta of Texture-Only was significantly higher than that of
Texture and Location [t(9) � 3.08, P � 0.01] and Viewpoint
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n.s 
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Text2Loc1View2 

Text2Loc2View1 

Text2Loc2View2 

* 
Fig. 4. Experiment 1 results. A: representa-
tional similarity matrix was constructed from
the actual fMRI data. The conditions that share
the same texture ensemble showed higher cor-
relation to each other (lighter gray cells), sim-
ilar to the hypothetical Texture-Only model.
B: result of the multiple linear regression.
Only the Texture-Only predictor could signif-
icantly explain the variance in the fMRI data.
*P � 0.05; n.s., not significant. C: multidi-
mensional scaling (MDS) plot. Each dot rep-
resents a condition. Dark gray dots indicate the
conditions that have texture ensemble 1,
whereas light gray dots represent the condi-
tions that have texture ensemble 2. The frames
around each stimulus image are depicted
based on the specific combination of texture
and location (as in Fig. 1A). This plot shows
that the dots with the same shade of gray
(same texture ensemble) are positioned toward
the same side, which is consistent with the
Texture-Only hypothesis. However, no such
pattern was observed according to the Texture
and Location combination or Viewpoint.
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[t(9) � 2.79, P � 0.02]. However, there was no significant
difference between betas of Texture and Location and View-
point [t(9) � �2.18, P � 0.05]. The results suggest that the
Texture-Only predictor explains the PPA’s response signifi-
cantly better than the other two predictors.

We also used rank correlation method (Nili et al. 2014) and
replicated results from the multiple linear regression, suggest-
ing that the Texture-Only model is a significantly better model
than the other two (Texture-Only model � � 0.1038; Texture
and Location model � � 0.0021; Viewpoint model � �
0.0158). This was true after accounting for a potential model
bias (see MATERIALS AND METHODS for more details). Further-
more, the correlation coefficient for the Texture-Only model
was just below the lower bound of the noise ceiling, suggesting
that this model can highly account for the non-noise variance
in the data.

Figure 4C illustrates a two-dimensional MDS plot based on
the averaged similarity matrix. Each dot in the plot represents
a condition; the conditions that elicit similar response patterns
are placed close to each other, whereas the conditions that elicit
different response patterns are placed far from each other. By
visualizing representations of the conditions in such a way, this
two-dimensional MDS plot allows us to easily observe the
representational geometries of our stimuli in the PPA. Consis-
tent results were also found in a three-dimensional MDS plot,
in which the third dimension was allowed to emerge. Thus we
chose to report the two-dimensional plot for simplicity’s sake.
Figure 4C shows that the conditions that share texture ensem-
ble 1 and those that share texture ensemble 2 are positioned
toward different ends of the horizontal axis, consistent with the
Texture-Only hypothesis but not the other two hypotheses. In
summary, experiment 1 results support the Texture-Only hy-
pothesis and suggest that the PPA represents the kind of
textures in a scene, regardless of the location of a texture in a
scene.

Experiment 2

The results of experiment 1 suggest that the PPA represents
texture ensemble information but not the location information
of a texture within a scene, at least not in the MVPs. Solely on
the basis of the experiment 1 data, however, we could not draw
a definite conclusion about whether or not the combined
information of texture and location is represented in the PPA.

There were both theoretical and technical reasons that led to
further testing of the texture representation in the PPA. First,
participants consistently rated stimuli that shared the same
texture and same location as similar and stimuli that had the
same texture and different locations as different. However,
MVPA results from experiment 1 did not reflect such behav-
ioral similarity judgment, which required further testing.

Second, Kornblith et al. (2013) showed the existence of
neurons that are tuned to the combination of texture and spatial
information in the macaque monkey brain. However, that was
a single-cell recording study, which suggests that the conjoint
information of texture and space might be represented at the
neuronal level. If so, MVPs used in experiment 1 may not be
an ideal source from which to observe such conjoint represen-
tation. MVPA treats a single-voxel response as a minimum
unit, which contains a huge number of neurons (~630,000
neurons in a 3 � 3 � 3-mm functional voxel). Hence, it might

be problematic to assume homogeneity of neural responses
within a voxel. For example, there are many different patterns
of neural response that would produce the same average
response at the voxel level. However, since the MVPA mea-
sures patterns of the average voxel activity, the MVPA method
will be insensitive to such different cases. That is, if we are
interested in a representation with a scope that is smaller than
a voxel, then we need a more fine-grained measurement than
MVPA. Repetition suppression can be a useful alternative
method in this case. The basic assumption of repetition sup-
pression is that a neuron activated by the same stimulus for the
second time shows a reduced amount of activation (Grill-
Spector and Malach 2001). Since this assumption is applied at
neuronal level, instead of at voxel level, the different repre-
sentations within a voxel may be detected by using the repe-
tition suppression method (Drucker and Aguirre 2009; Grill-
Spector and Malach 2001). We come back to this point in
DISCUSSION.

Third, several recent papers have reported discrepant results
from MVPA and repetition suppression (Drucker and Aguirre
2009; Epstein and Morgan 2012; Ward et al. 2013), suggesting
that MVPA and repetition suppression may be sensitive to
different levels of representation, such as the representation
across multiple voxels and the representation at a more local,
or within-voxel, level. Moreover, a recent study (Hatfield et al.
2016) showed that combining results from MVPA and repeti-
tion suppression analysis provides a richer interpretation of the
topography of a neural representation. Motivated by these three
reasons, we tested our hypotheses again in experiment 2 by
using repetition suppression.

In experiment 2, we used average univariate beta estimates
of the peak time point for each condition and compared them
to the amount of activation for each condition. To test the
significance of repetition suppression results, pairwise t-tests
were conducted for each pair of conditions. The SameTexture-
SameLocation condition served as the lower baseline, because the
pairs of images presented in the SameTexture-SameLocation
condition were completely identical. The critical question con-
cerns the relative level of activation of the SameTexture-
DifferentLocation condition, which has image pairs that share
the same texture ensemble but have different location of
textures within each image. If the image pair in SameTexture-
DifferentLocation is represented as similar in the PPA, then the
activation level of SameTexture-DifferentLocation should be
similar to that of SameTexture-SameLocation. This is what the
Texture-Only hypothesis predicts, because the image pair in
SameTexture-DifferentLocation shares the exact same texture
ensemble. On the other hand, if the images in SameTexture-
DifferentLocation pairs are represented as different from each
other, the activation level of SameTexture-DifferentLocation
should be significantly greater than that of SameTexture-
SameLocation; we would expect the activation level of Same-
Texture-DifferentLocation to be similar to that of Different-
Texture-DifferentLocation, which plays a role as the upper
baseline. This is what the Texture and Location hypothesis
predicts, because the combination of texture and location
changes from that of the SameTexture-SameLocation condi-
tion, even though the texture ensemble remains the same.

A paired-samples t-test showed that the SameTexture-Same-
Location condition had a significantly lower response than the
DifferentTexture-DifferentLocation condition [t(10) � �2.21,
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P � 0.05]. This confirms the significant repetition suppression
effect for the SameTexture-SameLocation condition. Most crit-
ically, the SameTexture-DifferentLocation condition had a
significantly higher response than the SameTexture-Same-
Location condition [t(10) � �3.06, P � 0.05], suggesting that
the PPA is sensitive to the change of texture location in a scene
even when the texture ensemble is kept the same. The differ-
ence of repetition suppression effects between SameTexture-
DifferentLocation and DifferentTexture-DifferentLocation is
not significant [t(10) � 0.98, P � 0.34; Fig. 5], suggesting that
the effect of changing texture location was as great as changing
the texture itself. The result is in line with the prediction from the
Texture and Location hypothesis. This contradicts with results
from experiment 1 on the surface, which supported the Texture-
Only hypothesis. We discuss this contradiction in more depth in
DISCUSSION.

DISCUSSION

In this study, we investigated how the texture information in
a scene is represented in the PPA. Two competing hypotheses
were tested. The Texture-Only hypothesis states that the PPA
represents texture as is; that is, the PPA is sensitive to the
change in texture ensemble (kinds of textures) irrespective of
the texture’s spatial locations within a scene. The Texture and
Location hypothesis states that the PPA encodes texture con-
jointly with location in a scene. In this case, the PPA will be
sensitive to changes in the position of texture even when
texture itself has not changed.

The critical difference between the two hypotheses is that
they make different predictions on whether or not the PPA
distinguishes images that share the same texture ensemble but
have different locations of texture. To test which hypothesis
explains the neural representation in the PPA better, we created
stimuli in which the texture ensemble was the same but the
location of the texture is different. Interestingly, we found
different results in experiment 1 and experiment 2. In experi-
ment 1, the MVPs of the PPA activation did not show any

significant difference among scenes with different combina-
tions of texture and location. The representational similarity
matrix, made from MVPs, indicated that the PPA is sensitive to
the difference between texture ensembles but not to the differ-
ence between combinations of texture and location. In contrast,
in experiment 2, we found a repetition suppression effect to
images that share the same texture and location combination
but not to images that only share the same texture ensemble.
This result indicates that the PPA is sensitive to the spatial
information (e.g., specific location within a scene), in addition
to the texture ensemble.

MVPA and Repetition Suppression

The observed difference between experiment 1 and experi-
ment 2 results might be explained by the inherent differences
between two methods we used: MVPA and the repetition
suppression paradigm.

Several recent studies have reported discrepant results across
these methods, similar to the findings in this study. Such
studies evoke further questions and provide an opportunity to
see a broader picture about what each method measures.
Epstein and Morgan (2012) examined the PPA’s representation
of scene categories and landmarks. With MVPA, they found a
successful classification of both category and landmarks in the
PPA. In contrast, they found the repetition suppression effect
only for landmark images and not for category images (except
for a slight effect in a medial part of the left PPA). In other
words, the MVPA method could successfully distinguish the
stimuli at both the category and exemplar (in this case, land-
mark) levels, whereas repetition suppression was sensitive to
only exemplar-level stimuli such as landmarks (Epstein and
Morgan 2012). Another study showed a clear difference be-
tween MVPA and repetition suppression, and each method was
linked to explicit and implicit memory, respectively (Ward et
al. 2013). In this study, participants were shown repeated scene
images and asked to categorize them. The amount of behav-
ioral repetition priming was predicted by the repetition sup-
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Fig. 5. Experiment 2 results. Average hemody-
namic responses for experiment 2 conditions
are shown for PPA. Average peak beta esti-
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statistical peak of the time course. *Peak beta
estimates showed a significant difference be-
tween the SameTexture-SameLocation condi-
tion and the other 2 conditions. n.s., The Same-
Texture-DifferentLocation condition and Dif-
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pression effect in the occipitotemporal region but not by the
MVP similarity. Conversely, the subsequent recognition per-
formance was predicted by the pattern similarity in the occipi-
totemporal region but not by the repetition suppression effect.
These reports add weight to the idea that MVPA and repetition
suppression might be based on different neural mechanisms.

The question then arises: What mechanism underlies this
difference between MVPA and the repetition suppression par-
adigm? To further discuss possible reasons, we first need to
clarify what each method measures. The MVPA (Haxby et al.
2001; Haynes and Rees 2005; Kamitani and Tong 2005)
measures a distributed pattern of neural activity across voxels.
If MVPs are similar between two stimuli, this indicates that
similar voxels are activated. When the same voxel is activated,
however, it is not obvious how neurons within each voxel are
responding. As briefly mentioned in RESULTS, the minimum unit
we are looking at in fMRI studies is a voxel, and there are a
large number of neurons within each voxel. This fact suggests
a possibility that neurons with different tuning curves or
response patterns may coexist within a voxel (Drucker and
Aguirre 2009; Epstein and Morgan 2012). Since what we can
observe using fMRI is the average activation of all neurons
within a voxel, the fact that the same voxel is activated could
mean either that the same set of neurons are activated or that
different sets of neurons are activated but they are located
within the same voxel.

Repetition suppression, on the other hand, is sensitive to
within-voxel patterns (Aguirre 2007; Drucker and Aguirre
2009; Grill-Spector and Malach 2001). Although multiple
models have been proposed to explain the neural mechanism
underlying the repetition suppression effect, there is no unified
answer yet. However, all models share a common assumption
that the repetition suppression effect is observed when the
same set of neurons respond to two stimuli. Thus when the
repetition suppression is observed over two stimuli, this sug-
gests that the same set of neurons is activated by the stimuli.
Thus by looking at the repetition suppression effect one can
speculate how much overlap there is in population of neurons
within a voxel that respond to each stimulus. Taken together,
MVPA and repetition suppression both examine neural simi-
larity but at different levels: MVPA measures similarity across
voxels, and repetition suppression measures similarity at the
within-voxel level.

Neural Organization of Texture Representation in PPA

With the above framework in mind, we now interpret our
results in terms of different neural levels. First, MVPA results
suggest that different texture ensembles evoke different pat-
terns of activation across voxels, so we will assume that
different sets of voxels are involved in representing different
texture ensembles (e.g., voxel 1 vs. voxel 2; Fig. 6). At the same
time, MVPA results also suggest that the same texture ensem-
ble in a scene is represented similarly at the across-voxel level.
That is, images that share the same texture ensemble, regard-
less of the texture’s location in a scene, are likely to cause a
similar level of activation for a given voxel. Such a result can
be driven by at least two cases. In the first case, two images
stimulate the same set of neurons. In this case, the repetition
suppression effect is expected across the presentation of those
two images. In the second case, two images stimulate different

sets of neurons, but these different sets of neurons are anatom-
ically close to each other, such that they fall within the same
voxel. In this case, the repetition suppression effect is hardly
expected, because only a negligible number of neurons will be
activated for both stimuli.

In Fig. 6, the pattern that would be observed with MVPA is
shown as small parallelograms labeled voxel 1 and voxel 2. For
MVPA, we consider only the voxel-level pattern for each
“initial” stimulus presented in the figure. Note that the shaded
patterns of voxel 1 and voxel 2 are the same for Fig. 6, A and
B, but different for Fig. 6, A and C. In other words, in this
hypothetical case we would not see different patterns across
voxels for the stimuli that have the same texture in different
locations in a scene, as long as they share the same texture
ensemble.

Crucially, the similar pattern at the across-voxel level does
not guarantee the same neural patterns at the within-voxel
level, which is required for repetition suppression to occur. If
we observe repetition suppression between the stimuli that
share the same texture ensemble but with different locations of
each texture, it would suggest that there is a substantial number
of neurons that respond to both stimuli. On the other hand,
however, if the repetition suppression does not occur for those
stimuli, it would suggest a possibility that different sets of
neurons within the same voxel are activated for those stimuli.
For example, we can assume a situation in which there are four
neurons (e.g., N1–N4, Fig. 6) in a voxel (e.g., voxel 1) with
different tuning curves, such that N1 and N2 respond to the
stimulus Ens1Loc1View1 and N3 and N4 respond to the
stimulus Ens1Loc2View1 (Fig. 6). In this case, presentation of
the stimuli Ens1Loc1View1 and Ens1Loc2View1 in sequence
would not cause repetition suppression, because they evoke
different populations of neurons within this particular voxel.
However, even if they evoked different neurons, their output at
the voxel level would not be distinguishable.

Therefore, we propose that texture information in the PPA is
represented at multiple levels: texture ensemble information is
represented at the voxel level, and conjoint texture ensemble
and texture location information is represented at the within-
voxel level. Although we cannot make a claim about within-
voxel patterns on the basis of the MVPA results, this does hint
at the topographical organization of the PPA when representing
texture information. Note that the “topography” here refers to
how a neuronal population that represents certain information
(e.g., texture ensemble) is clustered closely together (e.g.,
within a voxel) or not (e.g., across voxels). In our results, when
two images share the same kinds of texture, even with the
different texture locations in a scene, they were likely to
activate similar MVPs. A similar MVP means that the same
voxels are likely to be activated across the stimuli, suggesting
that neurons activated by the two stimuli are likely to exist
within the same voxel. Since each voxel is determined by the
spatial location on the cortices, a high probability of being in
the same voxel indicates that the neurons coding the stimuli are
anatomically close to each other. Following this logic, the
MVPA results hint about how neuronal populations exist
topographically close together. Given our data, we propose that
the PPA neurons representing the same texture ensemble are
clustered together in such a way that they are more likely to fall
in the same voxel, compared with the neurons representing
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different texture ensembles. This kind of topographic represen-
tation is prevalent across the cortices, perhaps because it is an
efficient way of organizing neurons such that the distance
between them is minimized (Kaas 1997; Silver and Kastner
2009).

At the within-voxel level, texture ensemble information is
represented conjointly with texture location. Although it is
difficult to make a direct comparison to the monkey cell
recording results, our results are in line with previous studies.
Kornblith et al. (2013) showed that a significant number of
neurons in scene-selective regions were modulated by the
combination of texture and spatial factors. Similarly, experi-
ment 2 (repetition suppression paradigm) results suggest the
existence of neurons that are sensitive to different combina-
tions of texture and spatial location. As a note, it is entirely
possible that there are also neurons responding to texture only,
rather than conjointly with location, but that is perfectly com-
patible with the present results. Since those neurons tuned to a
specific texture will respond to both conditions that share the
same texture ensemble but in different locations (e.g.,
Ens1Loc1View1 and Ens1Loc2View1), they will not contrib-
ute to the difference in the repetition suppression effect.

Our results show the benefit and the significance of using both
MVPA and the repetition suppression method in investigating a
research question. These two methods are both widely used in
current fMRI studies. Nevertheless, most studies concern the
results from only one method, perhaps with an implicit assump-
tion that MVPA and repetition suppression are alternative meth-
ods. However, the present study demonstrates that an answer to
the research question could be different depending on the method,
because each method investigates a different level of representa-
tion. Thus we suggest that MVPA and repetition suppression
methods are complementary to each other and not necessarily
interchangeable per se. For example, an interpretation of MVPA
results could be complemented by results from the repetition
suppression method. Without considering the different repetition
suppression effect for the stimuli that share the same texture
ensemble, the PPA neurons’ sensitivity to the conjoint informa-
tion of texture and location would not have been noticed. Con-
versely, by looking at the repetition suppression results only, we
would not have learned about the topographic organization of
texture ensemble in the PPA.

Consequently, the most comprehensive understanding of the
neural representation would come from observing both levels,
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which can be accomplished by combining MVPA and repeti-
tion suppression. Although we do not necessarily assert that
both methods should always be used in a single study, an
experimental design such as the continuous carryover design
(Aguirre 2007) would be a useful way to observe both within-
voxel and across-voxel patterns in a single experiment.

Conjoint Representation of Texture and Location

This study contributes to the existing understanding about
the PPA’s scene representation. The results of experiment 2
(repetition suppression) suggest a complex relationship be-
tween the texture and the spatial information of a scene in the
PPA. Texture patches used in previous experiments (Cant and
Xu 2012; Jacobs et al. 2014) did not have cues for spatial
structure (e.g., lines separating the floor from the left or right
walls), which are crucial factors to define an image as a scene.
Cant and Xu (2012) found a repetition suppression effect in the
PPA for the patches with the same texture ensemble and argued
that the PPA represents texture ensemble information. How-
ever, the present study extends such results by adding spatial
structure to an image. When the texture was embedded in the
spatial structure of a scene, the repetition suppression effect in
the PPA was released and two images with the same texture
ensemble were treated as different when location of texture
changed.

The present study is in line with a recent study that inves-
tigated how scene-selective areas represent multiple visual
features (e.g., texture and spatial structure), depending on the
task demands. In Lowe et al. (2016), participants paid attention
to either global texture or spatial layout of the stimuli, which
consisted of four scene categories defined by the scene content
(natural vs. manufactured) and the spatial boundary (open vs.
closed). They suggest that texture and spatial layout are both
crucial features in the scene processing, but the contribution or
importance of each varies depending on the scene; overall,
Lowe et al. (2016) support a greater sensitivity of the PPA to
a scene structure than to texture. On the surface, this result may
seem to contradict the present results. However, one critical
difference between Lowe et al. (2016) and the present study
reconciles the finding: the spatial layout changes of scenes used
in Lowe et al. (2016) are fundamentally different from the
location of texture changes in the present study. In Lowe et al.
(2016), the level of spatial boundary was either “open” or
“closed.” In other words, changing the spatial layout indicated
a substantial amount of structural change, such as the differ-
ence between an open desert image and a closed cave image.
On the other hand, in the present study even when two stimuli
had different locations of texture the structure or layout of the
stimuli remained the same. In other words, if the texture and
color information is removed from images that differ in loca-
tion of texture, it will not be possible to differentiate the two of
them. This suggests that the location of texture alone is not
informative enough for scene recognition in the present study.
To be a diagnostic feature for scene recognition, the location
information needs to be conjointly encoded with texture infor-
mation. On the contrary, if there is a structural change between
the two stimuli, as in the Lowe et al. (2016) study, it will still
be possible to differentiate the two images when the texture or
color information is removed. This suggests that the spatial
layout alone is informative for scene recognition in Lowe et al.

(2016). This is a critical difference, which makes it hard to
make a direct comparison between the results of the present
study and Lowe et al. (2016).

What would be the benefit of coding texture and its spatial
information together? Separate from the question of how the
PPA represents the texture information (e.g., Texture-Only vs.
Texture and Location), it is also interesting to ask why the PPA
represents the texture information in such a way. We speculate
that texture information plays a crucial role in identifying and
differentiating different scene images, especially when the
spatial layout is not informative (e.g., rooms with identical
geometric features). In such cases, the location of a specific
texture can provide valuable information for determining a
scene’s identity (Epstein and Julian 2013). Taken together, the
overall story is that the PPA is generally more sensitive to the
structure information of a scene; however, if the structure
information is not available, then texture information becomes
the most salient diagnostic feature, resulting in higher sensi-
tivity to texture in the PPA.

The place identity judgment (stimuli rating) result also
supports this idea. It is shown that if two scenes have different
combinations of texture and location, people perceive them as
different places. This result suggests that people use the com-
bined information of texture and location as a cue to judge the
place identity of a scene. Perhaps this provides the ecological
reasons for the PPA neurons to encode the texture and its
location information together. This raises the possibility that
PPA neurons are tuned to scene identity; however, testing such
a possibility would require further study with conditions dis-
sociating place identity from texture and location information.

Conclusions

The present study observed the representation of texture
information within a scene, which is an aspect of scene per-
ception that has not been explored much to date. We investi-
gated how texture information is represented in the PPA using
MVPA and repetition suppression. Throughout experiments 1
and 2, we provide evidence that MVPA and repetition suppres-
sion examine brain activation patterns at different levels:
across-voxel and within-voxel, respectively. We propose that
texture information within a scene context is represented in the
PPA at multiple levels: the texture ensemble information is
represented in the PPA at the across-voxel level, and the
conjoint information of the texture and its location is repre-
sented at the within-voxel level. These results are in line with
the rapidly evolving view that the PPA encodes not only spatial
information but also nonspatial information (Cant and Xu
2012, 2015; Epstein and Julian 2013; Harel et al. 2013;
Kornblith et al. 2013).
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