

Texture information processing in the Parahippocampal Place Area (PPA)

Jeongho Park, Soojin Park Department of Cognitive Science, Johns Hopkins University

INTRODUCTION

- Traditional view of the PPA
 - Parahippocampal "Place" Area
 - Specific module for "scene" processing
- More Recent view
 - PPA represents spatial layout (Epstein & Kanwisher, 1998; Park et al., 2011), scene category (Walther et al., 2009; Epstein & Morgan 2011), line drawings (Walther et al., 2011), big objects (Konkle & Oliva, 2011; Troiani et al., 2012), etc.
 - PPA also represents texture information! (Komblith et al., 2013; Cant & Goodale, 2011; Cant & Xu, 2012; Cant & Xu, in press)

- However, not much is known about how the PPA represents texture in the context of a scene
 - The stimuli used in previous studies were patches (Cant & Xu, 2012)
 - Or surfaces of objects (Cant & Goodale, 2011)
- It has been suggested that the texture information might provide a cue to identifying a scene

Figure from Epstein & Julian (2013)

Research Question

How does the PPA represent texture within a scene?

Hypothesis 1

The PPA represents the "ensemble" of texture (e.g., what *kind* of texture)

Hypothesis 2

The PPA represents the texture as a cue to the identity of a scene ("placeness")

- One-back repetition detection task
- 4 Blocks of 4 conditions / Run
 - ✓ Face, Scene, Object, and Scrambled object
- ✓ Stimulus duration: 800ms
- ✓ 20 Stimuli / Block
- PPA localization: **Scene Face** (p < .0001)

Methods from the previous trial? • Stimuli ✓ 8 Different images were repeated √ TextureEnsemble(2) x TextureLocation(2) x Layout(2) ✓ Presented in a random order **Texture Ensemble 2** Layout 1 [Condition 5] [Condition 7] Layout 2 Predictive Representational Models Hypothesis I I Hypothesis I Texture location Texture Ensemble

Behavioral Results Placeness Judgment Task 1.0 Amazon Mechanical Turk ✓ N = 26

✓ 1 (Definitely different) ~ 4 (Definitely the same)

Task: Placeness judgment

√ 1 Run: 40 trials; 6 runs

✓ 160 TR (TR = 2 sec)

(1: same, 2: different)

Fast-Event Related

✓ 1 Trial: 2 sec

Measurement of representational similarity between activation patterns of each condition pair

EXPERIMENT 2

- Fast-Event Related Adaptation Design √ 1 Trial: 4 sec (Jittered ITI: average 3 sec)
 - ✓ 1 Run: 48 Trials; 4 Runs
 - ✓ 174 TR (TR = 2 sec)
 - ✓ 2 images were shown in one trial

Condition 1: Identical]

[Condition 2: Same Texture Different Placeness

Different

Methods

- Task: Placeness judgment (1: same, 2: different)
- Stimuli
 - √ 3 Conditions
- ✓ Image presentation order was counterbalanced across subjects
- √ 256 different images (never repeated)

Neural Adaptation Results

- Peak activation (beta weights) in the PPA
- No difference between left and right PPA → Averaged results reported
- Significant difference between Condition 1 (Identical) and Cond 2 (Same TextureEnsemble, Different Placeness)

→ Hypothesis 2 supported!

DISCUSSION

- Different results from Experiment 1 & 2!
- Texture information in the PPA might be represented hierarchically
 - At coarser level: texture ensemble information (the kind of texture) is represented
 - At finer level: placeness information of a texture (e.g. specific texture location) is represented
- MVPA and Adaptation methods allow us to observe different levels of representation (Epstein & Morgan, 2011)
 - MVPA: coarser categorical representation
- Neural Adaptation: finer grained exemplar representation; closely related to the representational distinctions revealed by behavior (e.g., placeness judgment)